School of Engineering :: The University of Jordan :: Reconciling Urban Density with Daylight Equity in Sloped Cities: A Case for Adaptive Setbacks in Amman, Jordan

School Research

Reconciling Urban Density with Daylight Equity in Sloped Cities: A Case for Adaptive Setbacks in Amman, Jordan

Urban regulations in Amman, Jordan, enforce uniform building setbacks irrespective of topography, exacerbating shading effects and compromising daylight access in residential areas—a critical factor for occupant health and psychological well-being. This study evaluates the interplay between standardized setbacks, slope variations (0–30%), and shadow patterns in Amman’s dense, mountainous urban fabric. Focusing on the Al Jubayhah district, a mixed-methods approach was used, combining field surveys, 3D modeling (Revit), and seasonal shadow simulations (March, September, December) to quantify daylight deprivation. The results reveal severe shading in winter (78.3% site coverage in December) and identify slope-dependent setbacks as a key determinant: for instance, a 15 m building on a 30% slope requires a 26.4 m rear setback to mitigate shadows, compared to 13.8 m on flat terrain. Over 39% of basements in the study area remain permanently shaded due to retaining walls, correlating with poor living conditions. The findings challenge Amman’s one-size-fits-all regulatory framework (Building Code No. 67, 1979), and we propose adaptive guidelines, including slope-adjusted setbacks, restricted basement usage, and optimized street orientation. This research underscores the urgency of context-sensitive urban policies in mountainous cities to balance developmental density with daylight equity, offering a replicable methodology for similar Mediterranean climates.