The need for higher data rate and higher systems capacity leads to several solutions including higher constellation size, spatial multiplexing, adaptive modulation and Non-Orthogonal Multiple Access (NOMA). Adaptive Modulation makes use of the user’s location from his base station, such that, closer users get bigger constellation size and hence higher data rate. A similar idea of adaptive modulation that makes use of the user’s locations is the NOMA technique. Here the base station transmits composite signals each for a different user at a different distance from the base station. The transmitted signal is formed by summing different user’s constellations with different weights. The closer the users the less average power constellation is used. This will allow the closer user to the base station to distinguish his constellation and others constellation. The far user will only distinguish his constellation and other user’s data will appear as a small interference added to his signal. In this paper, it is shown that the Adaptive modulation and the NOMA are special cases of the more general Cluster Modulation technique. Therefore, a general frame can be set to design both modulation schemes and better understanding is achieved. This leads to designing a multi-level NOMA and/or flexible adaptive modulation with combined channel coding.
Paper link