The University of Jordan School of Engineering Department of Computer Engineering Fall Semester – A.Y. 2024-2025

Course:	Computer Vision – 0917549 (3 Cr. – Elective Course)
Catalog Data:	Introduction to computer vision including fundamentals of computer vision at the low, medium and high levels. Topics include image formation, camera imaging geometry, feature detection and matching, stereo, motion estimation and tracking, video processing, deep- learning algorithms for image classification, object recognition, object detection and scene understanding. The course focuses on the practical aspects and implementation of these topics through homework assignments and project.
Prerequisites by Course:	0917451 AI and Machine Learning
Prerequisites by Topic:	Students are assumed to have good background in mathematics, particularly, calculus, linear algebra, statistics, probability, good background in machine learning and Python programming skills
Textbook:	 Raphael Gonzales and Richard Woods, Digital Image Processing, 4th Edition, Pearson, 2018. Richard Szeliski, Computer Vision: Algorithms and Applications, 2nd Edition, Springer, 2021. M. Elgendy, Deep Learning for Vision Systems, 1st Edition, Manning, 2020. Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow: Concepts: Tools, and Techniques to Build Intelligent Systems, 2nd Edition, O'Reilly Media, Oct 2019.
References:	 D. Forsyth and J. Ponce Andries, Computer Vision: A Modern Approach, 22nd Edition, Pearson India, 2011. Jan Erik Solem, Programming Computer Vision with Python, O'Reilly Media, 2012.
Course Website:	https://sites.google.com/view/iyadjafar
Schedule & Duration:	16 Weeks, 48 lectures, 50 minutes each (including exams).
Minimum Student Material:	Text book, class handouts, some instructor keynotes, calculator and access to a personal computer and internet.
Minimum College Facilities:	Classroom with whiteboard and projection display facilities, library, and computational facilities.
Course Objectives:	 This course introduces the students to the basic concepts of computer vision at a number of different levels: 1. Computer vision definition, goals, applications and challenges. 2. Low-level computer vision tasks for image filtering, edge detection, corner detection. 3. Feature extraction and matching. 4. Medium-level computer vision tasks for image segmentation and binary image processing.

	5.		ter vision tasks for object semantic segmenation	
Course Outcomes and Relation to ABET Program Outcomes:	to: 1. 2. 3. 4.	Demonstrate a computer vision Understand con high levels [2]. Use computers tasks using ava Communicate t vision problem presentation [3]	sound understanding field and its application mputer vision algorith and software tools to ilable packages [1]. he development of a through a detailed teo	a student should be able g of the definition of the ons [2]. ms at low, medium and perform computer visior solution for a compute chnical report and a shor orld problem in compute
Course Topics:	2. Im Im 3. Ec Lin 4. Co 5. Ba Th 6. Go Im 7. Ro Ma 8. An No 9. Cl Go 10. W	age Formation a bage Statistics, bage Scaling, Ima dge Detection Us baking, Hough Tra priner Detection, E asic Thresholdir presholding, Segn ecometric Feature bages, Morpholog ecognition Tasks achine Learning tificial Neural Ne eural Networks NN Design Patter pogLeNet, ResNe hole Image C	Point Operations Co ge Interpolation, Geor sing Derivatives, Can nsform for Line and C Blobs Detection, SIFT ng, Otsu Optimal nentation as Clusterin s of Binary Objects, ical Processing , Classical Recognition tworks Review, Deep rns, LeNet-5, AlexNet, et Classification, Object stance Segmentation	Color and Color Spaces provolution and Filtering metric Transformation ny Edge Detector, Edge ircle Detection Thresholding, Variable g Segmentation of Binary on Pipeline, Overview o b Learning, Convolutiona VGGNET, Inception and t Detection, Semantic
Computer Usage:				ework assignments and a computer vision package.
Attendance:		attendance will be enforced in this r		nd the university's polices
Assessments:	Quizze	es and Exams.		
Grading policy:	Home Projec Midter Final E	t m Exam	10% 10% 30% 50%	
Instructors:				

Class Time and Location:

Program Outcomes (PO)

1	An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering,
	science, and mathematics
2	An ability to apply engineering design to produce solutions that meet specified needs with consideration of public
	health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3	An ability to communicate effectively with a range of audiences

4	An ability to recognize ethical and professional responsibilities in engineering situations and make informed		
	judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal		
	contexts		
5	An ability to function effectively on a team whose members together provide leadership, create a collaborative and		
	inclusive environment, establish goals, plan tasks, and meet objectives		
6	An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering		
	judgment to draw conclusions		
7	An ability to acquire and apply new knowledge as needed, using appropriate learning strategies		

Last Updated: JULY 13TH, 2024