COURSE DESCRIPTION TEMPLATE FOR GRADUATE STUDIES

Faculty: Engineering and Technology Department: Mechanical Engineering

COURSE TITLE	Continuum Mec	hanics	COURS	E CC	DDE	0904707
LECTURER(S)				EM	AIL:	
CREDITS	3	PRE-RE(JUISITE ((S)		-
DURATION OF COURSE		4 months				

OBJECTIVES:

The main objectives of the course are:

- 1. Developing the main continuum concepts, mainly the algebra and calculus of tensors
- 2. Deriving and using the universal laws and constitutive laws in both symbolic and indicial notation.
- 3. Developing the main principles of stress, strain, and motion kinematics
- 4. Building a foundation for important mechanics topics such as elasticity, plasticity, viscoelasticity, composite materials, and fluid mechanics.

INTENDED LEARNING OUTCOMES:

Subject Specific Skills:

At the end of the course students will be able to:

- 1. Deal with symbolic, indicial and matrix notation of tensors
- 2. Perform stress, strain and deformation analysis of deformable bodies
- 3. Apply the concepts of continuum mechanics to advanced case of elasticity and fluid flow

Core Academic Skills: At the end of the course, students are expected to:

- 1. Acquire the mathematical principles of advanced mechanics courses
- 2. Develop the basic skills of engineering research

Personal and Key Skills: At the end of the course, students are expected to

- 1. Use symbolic, indicial and matrix notations of tensors
- 2. Analyze the motion, stress and strain of deformable bodies under different loads
- 3. Develop the necessary skills for more advanced course

LEARNING/TEACHING METHODS:

- 1. Lectures
- 2. Internet material
- 3. Seminars by students

ASSIGNMENTS:

- 1. Problem Solving
- 2. Internet and Reference Search on Specific Topics
- 3. Presentations

ASSESSMENT:

Mid-Term Exam	30 %
Term Paper	15 %
Assignments	15 %
Final Exam	40 %

SYLLABUS PLAN:

Week	Торіс	Hrs.	Comments
1	Introduction and basic concepts of continuum mechanics	3	
2	Tensors: rank, symbolic notation, index notation.	3	
3	Matrix representation of tensors	3	
4	Transformation laws and matrices of Cartesian tensors	3	
5	Eigenvalue problem, Eigen vectors	3	
6	Tensor Calculus, integral theorems	3	
7	Stress Principles, Stress Vector, Stress Tensor	3	
8	Equilibrium Equations, Stress Transformation, Principal	3	
	Stresses		
9	Kinematics, Deformation, and Motion. Lagrangian and	3	
	Eulerial descriptions of motion		
10	Finite Strain Tensors. Infinitesimal Strain Tensor.	3	
	Principal Strains		
11	Stretch ratios. Velocity gradients. Rotation Tensor	3	
12	Fundamental Laws of Continuum Mechanics.	3	
	Continuity Equation. Linear Momentum Principle.		
	Angular Momentum Principle.		
13	Energy Conservation, Constitutive laws.	3	
14	Introduction to linear elasticity theory. Tensor of elastic	3	
	coefficients.		
15	Generalized Hooke's law. Plane Stress and Plane Strain	3	
	analysis.		
16	Elastostatic and Elastodynamic Problems.	3	

INDICATIVE BASIC READING LIST/RELATED WEBSITES:

- 1. G.E. Mase and G.T. Mase, Continuum Mechanics for Engineers. CRC.
- 2. T.J. Chung , Continuum Mechanics. Prentice Hall.
- 3. A.J.M. Spencer, Continuum Mechanics. Longman.
- 4. G.E. Mase, Continuum Mechanics (Shaum's Outline Series). McGraw Hill.
- 5. Y. C. Fung, A First Course in Continuum Mechanics. Prentice Hall.
- 6. L. Malvern, Introduction to the Mechanics of a Continuous Medium. Prentice Hall.