

The University of Jordan

Accreditation & Quality Assurance Center

COURSE Syllabus

<u>Course Name: Engineering</u> <u>Mathematics (1)</u>

1	Course title	Engineering Mathematics (1)
2	Course number	(0301202)
2	Credit hours (theory, practical)	3
3	Contact hours (theory, practical)	3
4	Prerequisites/corequisites	(0301201)
5	Program title	B.Sc.
6	Program code	
7	Awarding institution	The University of Jordan
8	Faculty	Science
9	Department	Mathematics
10	Level of course	College requirement
11	Year of study and semester (s)	all Semesters
12	Final Qualification	B.Sc. in Mathematics
13	Other department (s) involved in teaching the course	None
14	Language of Instruction	English
15	Date of production/revision	1.11.2016

16. Course Coordinator:

Office numbers, office hours, phone numbers, and email addresses should be listed.

Dr. Iryna

17. Other instructors:

Office numbers, office hours, phone numbers, and email addresses should be listed.

18. Course Description:

As stated in the approved study plan.

Ordinary differential equations, linear differential equations of second and higher order, systems of differential equations, phase plane, stability, series solutions of differential equations, orthogonal functions, Laplace transforms, linear systems of equations, matrices and determinants.

19. Course aims and outcomes:

A- Aims:

- 1- Model some real life problems using ODEs.
- 2- Solve some special types of ODEs, such as first order ODEs, Linear ODEs, Cauchy Euler ODEs.
- 3- Use series solutions to solve ODEs.
- 4- Use Laplace transforms to solve ODEs.

B- Intended Learning Outcomes (ILOs): Upon successful completion of this course students will be able to ...

Successful completion of the course should lead to the following outcomes:

A. Knowledge and Understanding Skills: Student is expected to

A1) Master the basic concepts of ordinary differential equation (ODE).

- A2) Select proper procedure to solve a given ODE.
- A3) Find Laplace and Inverse Laplace transforms of given functions
- A4) Master the basic concepts of linear algebra

B. Intellectual Analytical and Cognitive Skills: Student is expected to

- B1) Write down an ODE that represents a given model
- B2) Find several ODEs whose solution is a given function

C. Subject- Specific Skills: Student is expected to

- C1) Solve a system of linear ODE's
- C2) Solve a system of linear algebraic equations
- C3) Use Mathematical Packages to find analytical or Numerical solution of an ODE.

D. Creativity /Transferable Key Skills/Evaluation: Student is expected to

- D1) Be involved in the process of illustrating concepts, building algorithms and exploring facts.
- D2) Make critical comments on obtained results
- D3) Write reports, to be involved in general discussions with his class mates, and to do independent work.

20. Topic Outline and Schedule:

Topic	Week	Instructor	Achieved ILOs	Evaluation Methods	Reference
Chapter 1: First order ordinary differential equations (ODE) 1- Basic concepts: differential equation, ordinary, order, linear, non-linear, solution, homogeneous, non-honogeneous initial value problem .Examples. 1-3: First order Separable ODE, can be made separable, Examples. Problems: (2-19) odd numbers $(y' = f\left(\frac{y}{x}\right), u = \frac{y}{x})$ 1-4: First order Exact ODE, Test of Exactness, solution, can be made Exact (Integrating factor), Examples. Problems: (1-20) odd numbers 1-5: First order Linear ODE, solution (Integrating	1-3			Exam	
factor) can be made Linear (Bernoulli equation), Examples. Problems: (3-17) odd numbers Chapter 2: Second order ODE	4-6			Exam	
2-1: Homogeneous, non-homogeneous, Linear independence, Basis, general solution, particular solution. Reduction of order: x- missing, y-missing, if one solution is known find another linearly independent solution, Examples Problems: (1-14) odd numbers, 15, 16, 18, 19, 21.					
2-2: Homogeneous Linear of constant coefficients, exponential solution, characteristic equation, three cases (two different real roots, one repeated real root, complex roots and Euler formula) Problems: (1-32) odd numbers					
2-5 : Can be made equation with constant coefficients (Euler-Cauchy equation) auxiliary equation, solution, Three cases: Two distinct real roots, one repeated x^m real root, complex roots. Examples Problems: (1-15) odd numbers 2-6: Existence and uniqueness, Linear independence, Wronskian. Problems: (1-17) odd number					

		1		1
homogeneous + Particular solution of non-				
homogeneous = general solution of non-				
homogenous. Finding particular solution				
using Method of undetermined coefficients.				
Examples. Problems: (1-20) odd numbers				
2-10: Finding Particular solution using Method of				
variation of parameters. Examples.				
Problems: (1-17) odd numbers				
<u>Chapter 3</u> : Higher order Linear ODE.	7		Exam	
3-1 : Homogeneous linear differential equation of				
order n, general solution, initial value				
problem, existence and uniqueness of				
solution, linear independence, Wronskian				
Examples. Problems: (1-19) odd numbers				
3-2: Homogeneous linear differential equation of				
order n of constant coefficients, exponential				
-				
solution, characteristic equation of order n,				
cases of roots .				
Examples. Problems: (1-18) odd numbers				
3-3 : Non-Homogeneous linear differential				
equation of order n, general solution of				
non-homogeneous = general solution of				
homogeneous + particular solution of non-				
homogeneous Finding particular solution by				
method of undetermined coefficients and by				
method of variation of parameters For				
Euler- Cauchy equation can be made of				
constant coefficients By finding auxiliary				
equation using solution $y = x^m$, Examples				
Problems: (1-14) odd numbers				
<u>Chapter 4</u> : System of differential equations	8		Exam	
4-1: Definition of System of differential				
equations, nth order ODE as a system of				
differential equations Examples .Problems:				
(11-15) odd numbers				
4-2: Eigen values and eigen vectors, linear				
system, homogeneous, non-homogeneous				
systems, general solution of homogeneous				
system.				
Examples. Problems: (1-15) odd numbers				
4-3 : Homogeneous systems of constant				
coefficients				
Examples Problems: (1-15) odd numbers				
4-6: General solution of Non-homogeneous				
4-6: General solution of Non-homogeneous				
4-6: General solution of Non-homogeneous systems=general solution of Homogeneous system + Particular solution of non-				
4-6: General solution of Non-homogeneous systems=general solution of Homogeneous system + Particular solution of non- homogeneous system .Particular solution				
 4-6: General solution of Non-homogeneous systems=general solution of Homogeneous system + Particular solution of non- homogeneous system .Particular solution can be found by Method of undetermined 				
 4-6: General solution of Non-homogeneous systems=general solution of Homogeneous system + Particular solution of non- homogeneous system .Particular solution can be found by Method of undetermined coefficients or by Method of variation of 				
4-6: General solution of Non-homogeneous systems=general solution of Homogeneous system + Particular solution of non- homogeneous system .Particular solution can be found by Method of undetermined coefficients or by Method of variation of parameters.				
 4-6: General solution of Non-homogeneous systems=general solution of Homogeneous system + Particular solution of non-homogeneous system .Particular solution can be found by Method of undetermined coefficients or by Method of variation of parameters. Examples. Problems: (2-16) odd numbers 	0-11			
 4-6: General solution of Non-homogeneous systems=general solution of Homogeneous system + Particular solution of non-homogeneous system .Particular solution can be found by Method of undetermined coefficients or by Method of variation of parameters. Examples. Problems: (2-16) odd numbers Chapter 5: Series solution of ODE. 	9-11			
 4-6: General solution of Non-homogeneous systems=general solution of Homogeneous system + Particular solution of non-homogeneous system .Particular solution can be found by Method of undetermined coefficients or by Method of variation of parameters. Examples. Problems: (2-16) odd numbers 	9-11			

the sum, real analytic functions, existing of			
power series solution, regular points and			
singular points of a differential equation,			
Recurrence relation .Examples. Problems:			
(1-16) odd numbers; Problems: (16-23)			
odd numbers			
odd humbers			
5-4: Solution of ODE near regular singular points,			
(Frobenius Method), Indicial equation,			
roots , three cases. Examples. Problems:			
(1-17) odd numbers			
5-7: Sturm – Liouville equation, Sturm –			
Liouville problem, real eigenvalues,			
eigenfunctions solution, Ortho-normal			
eigenfunctions.			
Examples .Problems: (1-19) odd numbers			
<u>Chapter 6</u> : Laplace Transform.	12-14		
6-1: Definition of Laplace and inverse of Laplace	12 11		
Transform, Linearity, First shifting theorem,			
· · ·			
Existence and uniqueness of Laplace			
transform Examples. Problems:			
(1-20),(29-40),(41-54) odd numbers			
6-2: Laplace Transform of derivative and of			
integral Solving initial value problem using			
Laplace transform Examples. Problems: (1-			
8), (10-24),(27-34) odd numbers			
6-3: Unit step function ,writing branch functions			
as a linear combination of functions using			
unit step function, Second shifting theorem			
,Solving initial value problems			
Containing branch functions. Examples.			
Problems: (2-34) odd numbers			
6-4: Dirac $\boldsymbol{\delta}$ -function: Examples.			
6-5: Convolution (optional)			
6-6: Differentiation and integration of Laplace			
transform			
Examples Solving ode with variable			
coefficients. Problems: (1-20) odd numbers			
6-7: Solving System of ODE using Laplace			
transform. Examples. Problems: (1-20) odd			
numbers			
Chapter 7: Matrices, Determinants and Linear	15		
system of equations			
7-1, 7-2 :Basic properties of Matrices,			
eigenvalues, eigenvectors Remark: part or			
all of these sections can be given in			
Chapter 4 .Examples			
7-3: Linear system of algebraic equations,			
Coefficient matrix, Augmented matrix,			
Elementary row operations, row Equivalent			
systems, (Gauss elimination method), three			
cases Examples. Problems: (1-16) odd			
numbers			
7-5: Existing and uniqueness of solution of linear			
7-3. Existing and uniqueness of solution of inteal			

system Examples.		
7-7: Basic properties of Determinants, Solution of		
linear system using Cramer's Rule.		
Examples. Problems: (5-16),(18-20) odd		
numbers		
7-8: Inverse of a matrix, Solution of linear system		
using inverse of a matrix, Finding inverse of		
a matrix using Gauss-Jordan elimination		
method or adjoint method.		
Examples. Problems: (1-12) odd numbers		

21. Teaching Methods and Assignments:

Development of ILOs is promoted through the following <u>teaching and learning methods</u>:

In order to succeed in this course, each student needs to be an active participant in learning - both in class and out of class.

- Class time will be spent on lecture as well as discussion of homework problems and some group work.
- To actively participate in class, you need to prepare by reading the textbook and doing all assigned homework before class (homework will be assigned each class period, to be discussed the following period).
- You should be prepared to discuss your homework (including presenting your solutions to the class) at each class meeting your class participation grade will be determined by your participation in this.
- You are encouraged to work together with other students and to ask questions and seek help from the professor, both in and out of class.

22. Evaluation Methods and Course Requirements:

Opportunities to demonstrate achievement of the ILOs are provided through the following <u>assessment methods</u> <u>and requirements</u>:

ILO/s	Learning Methods	Evaluation Methods	Related ILO/s to the program
	Lectures	Exam	

23. Course Policies:

According to university regulations, attendance is mandatory. If a student is unable to attend a class, then he/she should contact the instructor. If a student misses more than 10% of the classes without excuse, then he/she will be assigned a falling grade in class.

In cases of extreme emergency or serious illness, the student will be allowed to make up the missed exams. Times and dates for make up exams will be assigned latter.

There are severe sanction for cheating, plagiarizing and any other form of dishonesty. The university regulations on cheating will be applied to any student who cheats in exams or on.

24. Required equipment:

Data Shows

25. References:

A- Required book (s), assigned reading and audio-visuals:

Advanced Engineering Mathematics by E. Kreyszig, 10th Edition.

B- Recommended books, materials, and media:

1) Advanced Engineering Mathematics by Dennis G. Zill and Warren S. Wright, 5th edition.

2) Advanced Engineering Mathematics by K. A. Stroud and Dexter J. Booth, 5th edition

26. Additional information:

Name of Course Coordinator: <u>Dr. Iryna</u> Signature: ------ Date: <u>1/11/2016</u> Head of curriculum committee/Department: <u>Dr. Hisham M. Hilow</u> Signature: ------Head of Department: <u>Dr. Baha Alzalg</u> Signature: ------Head of curriculum committee/Faculty: <u>Dr. Amal Al-Aboudi</u> Signature: ------Dean: <u>Dr. Sami Mahmood</u> Signature: ------

> <u>Copy to:</u> Head of Department Assistant Dean for Quality Assurance Course File