LLECMOD: A Bivariate Population Balance Simulation Tool for Pulsed Liquid-Liquid Extraction Columns


​The population balance equation finds many applications in modelling poly-dispersed systems arising in many engineering applications such as aerosols dynamics, crystallization, precipitation, granulation, liquid-liquid, gas-liquid, combustion processes and microbial systems. The population balance lays down a modern approach for modelling the complex discrete behaviour of such systems. Due to the industrial importance of liquid-liquid extraction columns for the separation of many chemicals that are not amenable for separation by distillation, a Windows based program called LLECMOD is developed. Due to the multivariate nature of the population of droplets in liquid –liquid extraction columns (with respect to size and solute concentration), a spatially distributed population balance equation is developed. The basis of LLECMOD depends on modern numerical algorithms that couples the computational fluid dynamics and population balances. To avoid the solution of the momentum balance equations (for the continuous and discrete phases), experimen-tal correlations are used for the estimation of the turbulent energy dissipation and the slip velocities of the moving droplets along with interaction frequencies of breakage and coalescence. The design of LLECMOD is flexible in such a way that allows the user to define droplet terminal velocity, energy dissipation, axial dispersion, breakage and coalescence frequen-cies and the other internal geometrical details of the column. The user input dialog makes the LLECMOD a user-friendly program that enables the user to select the simulation parameters and functions easily. The program is reinforced by a pa-rameter estimation package for the droplet coalescence models. The scale-up and simulation of agitated extraction col-umns based on the populations balanced model leads to the main application of the simulation tool.