

1

Course Syllabus

1	Course title	Artificial Intelligence					
2	Course number	0908485					
3	Credit hours	3	Obligatory Course				
3	Contact hours (theory, practical)	3 Theoretical Hours					
4	Prerequisites/corequisites	Digital Signals and Sys	tem Analysis (0908483)				
5	Program title	B.Sc. in Mechatronics I	Engineering				
6	Program code	08					
7	Awarding institution	The University of Jorda	n				
8	School	Engineering					
9	Department	Mechatronics					
10	Course level	4					
11	Year of study and semester (s)	2 nd Semester 2023/2024	1				
12	Other department (s) involved in teaching the course						
13	Main teaching language	English					
14	Delivery method	\Box Face to face learning	g \checkmark Blended \Box Fully online				
15	Online rletterme(s)	□ Moodle ✓ Microso	oft Teams \Box Skype \Box Zoom				
15	Online platforms(s)	□Others					
16	Issuing/Revision Date	25/02/2024					

17 Course Coordinator:

Name: Dr. Adham Alsharkawi	Contact Hours: Sunday, Tuesday &Thursday from 11:00 – 13:00
Office: Mechatronics Eng. Dep.	Phone Number: 5355000 Ext. 23030
e-mail: a.sharkawi@ju.edu.jo	

18 Other instructors:

19 Course Description:

Students Explore the vast domain of artificial intelligence (AI) and its integral role in tackling intricate engineering challenges. This course delves into AI's foundational techniques such as artificial neural networks, fuzzy logic, and genetic algorithms, emphasizing their practical applications in modeling and control. Concluding with hands-on exposure, students will implement machine and deep learning strategies using Python, equipping them with both theoretical understanding and practical skills for engineering solutions.

20 Course aims and outcomes:

A. Aims:

The primary objective of this course is to provide a comprehensive introduction to the fundamental principles, methods, and real-world applications of Artificial Intelligence. To augment students' comprehension, we'll utilize Python as a primary tool for hands-on learning and reinforcement.

B. Student Learning Outcomes (SLOs):

Upon successful completion of this course, students will be able to:

SLO(s) SO(s)	SO (1)	SO (2)	SO (3)	SO (4)	SO (5)	SO (6)	SO (7)
Distinguish the different types of artificial neural networks.							
Recognize the role of a fuzzy inference system.							
Describe the flowchart of a basic genetic algorithm.							
Update neural network models with new research insights for dynamic systems.							•
Apply latest advancements to enhance fuzzy logic controllers.							✓
Design an adaptive neuro-fuzzy inference system.							

21. Topic Outline and Schedule:

	1						
Week	Lecture		SLO	Platform	Synchronous / Asynchronous Lecturing	Evaluation Methods	Resources
	1.1	 Python Basics Python Data Structures					
1	1.2	 Python Programming Fundamentals Working with Data in Python 					
2	2.1	Working with Numpy Arrays and Simple APIs					
	2.2	Machine Learning (I)					
3	3.1	Machine Learning (II)					
5	3.2	Machine Learning (III)					
4	4.1	Machine Learning (IV)					
4	4.2	Machine Learning (V)					
5	5.1	Machine Learning (VI)					
3	5.2	Artificial neural networks (I)					
6	6.1	Artificial neural networks (II)					
0	6.2	Artificial neural networks (III)					
7	7.1	Artificial neural networks (IV)					
7	7.2	Artificial neural networks (V)					
8	8.1	Artificial neural networks (VI)					
ð	8.2	Fuzzy Expert Systems (I)					
0	9.1	Fuzzy Expert Systems (II)					
9	9.2	Fuzzy Expert Systems (III)					

QF-AQAC-03.02.01

ACCREDITATION & QUALITY ASSURANCE	2E CENTER				
	10.1	Fuzzy Expert Systems (IV)			
10	10.2	Fuzzy Expert Systems (V)			
11	11.1	Fuzzy Expert Systems (VI)			
	11.2	Evolutionary Computation (I)			
	12.1	Evolutionary Computation (II)			
12	12.2	Evolutionary Computation (III)			
13	13.1	Evolutionary Computation (IV)			
	13.2	Evolutionary Computation (V)			
	14.1	Evolutionary Computation (VI)			
14	14.2	Problem Framing (I)			
15	15.1	Problem Framing (II)			
	15.2	Problem Framing (III)			

22 Evaluation Methods:

Opportunities to demonstrate achievement of the SLO(s) are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	SLO(s)	Period (Week)	Platform
Quiz	5	Python-based		4 th Week	On Campus
Midterm Exam	30	ML & ANNs		9 th Week	On Campus
Quiz	5	FESs		10 th Week	On Campus
Project	10	ML, ANNs, and FESs		11 th Week	On Campus
Final Exam	50	All topics			

5

23 Course Requirements

(e.g: students should have a computer, internet connection, webcam, account on a specific software/platform...etc):

Every student is required to have a computer equipped with Python and a reliable internet connection.

24 Course Policies:

• Attendance:

Students are expected to attend EVERY class session. They are responsible for all materials, announcements, schedule changes, and other pertinent information discussed in class.

• Make-up Examinations

Make-up exams will not be offered for any scheduled exams throughout the course. Exceptions are limited to:

- The passing of immediate family members (father, mother, sister, or brother).
- \circ Hospitalization (as an inpatient) at the time of the scheduled examination.

Any other circumstances will result in a score of zero for the respective exam.

25 References:

Required book:

• Negnevitsky, Michael. Artificial intelligence: a guide to intelligent systems. Pearson education, 2005.

Recommended books:

- Nguyen, Hung T., et al. A first course in fuzzy and neural control. CRC press, 2002.
- Driankov, Dimiter, Hans Hellendoorn, and Michael Reinfrank. An introduction to fuzzy control. Springer Science & Business Media, 2013.
- Mitchell, Melanie. An introduction to genetic algorithms. MIT press, 1998.

QF-AQAC-03.02.01

6

26 Additional information:

	Name	Signature	Date
Course Coordinator:	Dr. Adham Alsharkawi	-	
Head of Curriculum			
Committee/Department:			
Head of Department:			
Head of Curriculum			
Committee/Faculty:			
Dean:			