

Form:	Form Number	EXC-01-02-02A
	Issue Number and Date	2/3/24/2022/2963
Course Syllabus	issue Number and Date	05/12/2022
	Number and Date of Revision or Modification	
	Deans Council Approval Decision Number	2/3/24/2023
	The Date of the Deans Council Approval Decision	23/01/2023
	Number of Pages	05

1	Course Title	Electronics		
2	Course Number	0908320		
2	Credit Hours (Theory, Practical)	3		
3	Contact Hours (Theory, Practical)	3 hours theoretical		
4	Prerequisites/ Corequisites	Electrical Circuits I (0903211)		
5	Program Title	B.Sc. in Mechatronics Engineering		
6	Program Code	0908		
7	School/ Center	The University of Jordan		
8	Department	Mechatronics Engineering Department		
9	Course Level	3 rd year		
10	Year of Study and Semester (s)	2023/2024 2nd Semester		
11	Other Department(s) Involved in Teaching the Course	None		
12	Main Learning Language	English		
13	Learning Types	\boxtimes Face to face learning \square Blended \square Fully online		
14	Online Platforms(s)	⊠Moodle ⊠Microsoft Teams		
15	Issuing Date	24/2/2024		
16	Revision Date	21/3/2024		

17 Course Coordinator:

Name: Prof. Riad Taha Al-KasasbehContact hours: As per scheduleOffice number: Mechatronics Dept., 3rd FloorPhone number: 065355000 ext. 23031Email: R.Al-kasasbeh@ju.edu.joPhone number: 065355000 ext. 23031

18 Other instructors:

None

19

This course provides a thorough examination of solid-state theory, semiconductors, and PN junctions, emphasizing their roles in fundamental diode circuits. Students will also gain proficiency in designing and analyzing basic power supplies, half-wave and fullwave rectifier circuits, Clipper and Clamper circuits, and Filters (Smoothing Circuit), as well as Regulators. The curriculum extensively covers Bipolar Junction Transistors (BJTs), encompassing various types and biasing techniques such as Self-biasing, Emitter-stabilized, Divider Voltage Biasing, Collector feedback biasing, Darlington transistors, and DC Analysis Multistage transistor circuits. Special emphasis is placed on designing BJT circuits to attain optimal resistor values for collector, emitter, and base configurations. Students will delve into MOS Field Effect Transistors (MOSFETs), including N-type and P-type MOSFETs, biasing methods, and their Current-Voltage characteristics. Additionally, the course introduces and discusses CMOS technology. Furthermore, students will analyze small-signal equivalent circuits of BJTs using Hybrid Analysis to define voltage and current gains, as well as AC Analysis Multistage transistor circuits, to enhance their understanding of these components and their behavior in electronic circuits.

Finally, the course explores modern applications of semiconductor devices, highlighting their cutting-edge uses in various industries and mechatronics applications.

Course Description:

20. Program Intended Learning Outcomes:

The Program Intended Learning Outcomes (PILOs) for this course might include:

- 1. **Solid-State Theory Understanding:** Students will demonstrate a comprehensive understanding of solidstate theory, including the behavior of semiconductors and PN junctions in fundamental diode circuits.
- 2. **Design and Analysis Skills:** Students will gain proficiency in designing and analyzing Diode Circuit DC Analysis, basic power supplies, half-wave and full-wave rectifier circuits, Clipper and Clamper circuits, Filters (Smoothing Circuit), and Regulators.
- 3. **BJT Knowledge:** Students will acquire in-depth knowledge of Bipolar Junction Transistors (BJTs), including various types and biasing techniques such as Self-biasing, Emitter-stabilized, Divider Voltage Biasing, Collector feedback biasing, Darlington transistors, and DC Analysis Multistage transistor circuits.
- 4. **BJT Circuit Design:** Students will be able to design BJT circuits to achieve optimal resistor values for collector, emitter, and base configurations, emphasizing practical applications.
- 5. **"FET and MOSFET Understanding :** This course will explore Field Effect Transistors (FETs) and Metal Oxide Semiconductor Field Effect Transistors (MOSFETs), covering N-type and P-type MOSFETs, biasing methods, and their Current-Voltage characteristics. The focus will be on practical design considerations."**Circuit**
- 6. **Analysis Skills:** Students will analyze small-signal equivalent circuits of BJTs using Hybrid Analysis to define voltage and current gains, as well as AC Analysis Multistage transistor circuits, enhancing their understanding of these components and their behavior in electronic circuits.
- 7. "Overview of Darlington BJT Pair Biasing and Cascade BJT Amplifier: Learn how to set the operating point for stable transistor operation in a Darlington pair and understand the cascade amplifier's configuration, advantages, and signal amplification principles. Additionally, explore the transistor's role as a switching circuit in digital applications."

8. **Modern Applications:** Students will explore modern applications of semiconductor devices, highlighting their cutting-edge uses in various industries and mechatronics applications, and understand their practical implications.

These PILOs outline the specific knowledge, skills, and understanding that students are expected to achieve upon completing the course.

Course	The learning levels to be achieved										
ILOs	Remembering	Understanding	Applying	Analyzing	evaluating	Creating					
1	\checkmark	\checkmark									
2	\checkmark	\checkmark	\checkmark	\checkmark							
3	\checkmark	\checkmark	\checkmark								
4	\checkmark	\checkmark	\checkmark								
5	\checkmark	\checkmark	\checkmark	\checkmark							
6	\checkmark	\checkmark	\checkmark		\checkmark						
7	\checkmark	\checkmark	\checkmark								
8	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						

SO: 7: An ability to acquire and apply new knowledge as needed, using appropriate learning strategies

22. Matrix linking the Course Intended Learning Outcomes (CILOs) to the Program Intended Learning Outcomes (PILOs

Program ILOs	ILO (1)	ILO (2)	ILO (3)	ILO (4)	ILO (5)	ILO (6)	ILO (7)
SOs	SO: 1	SO: 2	SO: 3	SO: 4	SO: 5	SO: 6	SO: 7
Course ILOs							
1							
2	✓						
3							
4							
5							
6	v						
7							
8							

23. Topic Outline and Schedule:

	- <u></u> -	Jutilité alle Schedule.	,			1		1
Week	Lecture	Topic	ILO/s Linked to the Topic	Learning Types (Face to Face/ Blended/ Fully Online)	Platform Used	Synchronous / Asynchronous Lecturing	Evaluation Methods	Learning Sources
1	1	Introduction/Outline	1	Classroom	Classroom	Synchr onous	Written quiz Project	Book+M oodle
	2	Solid-State Theory Of Semi conductors,	1	Classroom	Classroom	Synchr onous	Written quiz Project	Book+M oodle
	3	Positive and Negative Types of semi conductors ,PN junctions	1	Classroom	Classroom	Synchr onous	Written quiz Project	Book+M oodle
2	4	Diode Applications	1	Classroom	Classroom	Synchr onous	Written quiz Project	Book+M oodle
	5	Half-wave Rectifier	2	Classroom	Classroom	Synchr onous	Written quiz Project	Book+M oodle
	6	Full-wave Rectifier, Center Tapped Rectifier	2	Classroom	Classroom	Synchr onous	Written quiz Project	Book+M oodle
3	7	Filters RC (Smoothing Circuit)	2	Classroom	Classroom	Synchr onous	Written quiz Project	Book+M oodle

	8	Series and parallel positive and negative	2	Classroom	Classroom	Synchr onous	Written quiz Project	Book+M oodle
	9	clipper Clipper Dual (com Clamper Circuitbination)Diode	2	Classroom	Classroom	Synchr	Written quiz Project	Book+M oodle
4	10	clipper, Regulators(Zener Diode)	2	Classroom	Classroom	Synchr	Written quiz	Book+M
		-				onous	Project	oodle
	11	"Reviewing and solving examples of diode applications in DC and AC circuits	2	Classroom	Classroom	Synchr onous	Written quiz Project	Book+M oodle
	12	Overview of Bipolar Junction Transistor:(BJT) Definition as a semiconductor device	2	Classroom	Classroom	Synchr	Written quiz Project	Book+M oodle
		Structure of BJT Types of BJT (PNP, NPN), construction and symbols				onous		
5	13	BJT characteristics and parameters	2	Classroom	Classroom	Synchr onous	Written quiz Project	Book+M oodle
	14	Self biasing of BJT Common Emitter Biasing	1, 3	Classroom	Classroom	Synchr onous	Written quiz Project	Book+M oodle
	15	Emitter-stabilized biasing of BJT Collector feedback biasing of BJT	3	Classroom	Classroom	Synchr onous	Written quiz Project	Book+M oodle
6	16	"Divider Voltage Biasing for BJT, including Exact calculation methods."	3	Classroom	Classroom	Synchr onous	Written quiz Project	Book+M oodle
	17	"Divider Voltage Biasing for BJT, including Approximately calculation methods."	3	Classroom	Classroom	Synchr onous	Written quiz Project	Book+M oodle
	18	Design BJT circuits to achieve optimal resistor values for collector, emitter, and base configurations, emphasizing practical applications.	3	Classroom	Classroom	Synchr onous	Written quiz Project	Book+M oodle
7	19	DC Analysis Multistage transistor circuits	3	E-Learning	E-Learning	Synchr onous	Written quiz Project	Book+M oodle
	20	Overview of Hybrid Parameter Analysis of AC Circuits	3	Classroom	Classroom	Synchr onous	Written quiz Project	Book+M oodle
	21	Hybrid Parameter Analysis of AC Self biasing -and , Emitter-Stabilized Biasing BJT Circuits	3, 4	Classroom	Classroom	Synchr onous	Written quiz Project	Book+M oodle
8	22	Hybrid Parameter Analysis of AC Divider Voltage Biasing of BJT Circuits	3	Classroom	Classroom	Synchr onous	Written quiz Project	Book+M oodle
	23	"Hybrid Parameter Analysis of AC Multistage Biasing BJT Circuits"	3	Classroom	Classroom	Synchr onous	Written quiz Project	Book+M oodle

	24	Overview of Darlington BJT	3	Classroom	Classroom	a 1	Written quiz	Book+M
	21	Pair Biasing transistor	5	Clubbroom	Clussiooni	Synchr	Project	oodle
		operation and DC Analysis				onous		
9	25	Darlington BJT Pair Biasing	3	Classroom	Classroom	Synchr	Written quiz	Book+M
		transistor operation and AC				onous	Project	oodle
	26	Analysis Overview of Cascade BJT	3	Classroom	Classroom		Written quiz	Book+M
	20	Amplifier BJT Pair Biasing	5	Classioolii	Classioolli	Synchr	Project	oodle
		transistor operation and DC				onous	110,000	000000
		Analysis						
	27	Cascade BJT Pair Biasing	3	Classroom	Classroom	Synchr	Written quiz	Book+M
		transistor operation and AC				onous	Project	oodle
		Analysis				onous		
10	28	This lecture covers the role of	3	Classroom	Classroom		Written quiz	Book+M
		Bipolar Junction Transistors (BJTs) in mechatronics					Project	oodle
		circuits, including optimal						
		performance criteria (voltage				Synchr		
		gain, current gain, input				onous		
		impedance, load resistance,				0110000		
		and biasing conditions), with						
		detailed explanations and						
		design calculations.						
	29	"Practical examples and	3	Classroom	Classroom		Written quiz	Book+M
		design exercises will be					Project	oodle
		provided to illustrate the						
		concepts discussed, including an in-depth explanation of key				Synchr		
		parameters (Rb, Rc, Re, Beta,				onous		
		VCC) and their calculations				onous		
		for designing BJT circuits, as						
		well as an exploration of						
		biasing conditions."						
	30	Switching Characteristics:	3	Classroom	Classroom		Written quiz	Book+M
		Examination of BJT as a				G 1	Project	oodle
		switch in mechatronic				Synchr		
		systems, covering switching				onous		
		modes, speed factors, and control strategies.						
11	31	Advanced Topics in BJT	3	Classroom	Classroom		Written quiz	Book+M
	51	Applications : Exploration of		21.001.00111	2-200100111		Project	oodle
		advanced BJT configurations,				Synchr	5	
		current applications, thermal				onous		
		considerations, and future						
		trends in mechatronic systems.					***	
	32	Introduction to Field-Effect Transistors (FETs))	3,	Classroom	Classroom	Synchr	Written quiz Project	Book+M oodle
	22	Introduction to Metal-Oxide-	4	Classes	Cleases	onous	-	
	33	Semiconductor Field-Effect	3,	Classroom	Classroom	Synchr	Written quiz Project	Book+M oodle
		Transistors (MOSFETs)	4			onous	rioject	ooule
12	34	(MOSFET) Self Biasing	3,	Classroom	Classroom		Written quiz	Book+M
14	5-	Method and their Current-	4	Classicolli	Clabbiooni	G 1	Project	oodle
		Voltage Characteristics, with a				Synchr	- J	
		Focus on Practical Design				onous		
		Considerations.						
	35	(MOSFET) divider voltage	2,	Classroom	Classroom		Written quiz	Book+M
		Biasing Method and their	5			Synchr	Project	oodle
		Current-Voltage				onous		
L		Characteristics, with a Focus						

		on Practical Design Considerations.						
	36	(MOSFETs) Divider Voltage and Self-Biasing Methods, along with their Current- Voltage Characteristics, are explored with a focus on practical design considerations	5	Classroom	Classroom	Synchr onous	Written quiz Project	Book+M oodle
13	37	Common-Source configuration	5	Classroom	Classroom	Synchr onous	Written quiz Project	Book+M oodle
	38	Commn Drain configuration	5	Classroom	Classroom	Synchr onous	Written quiz Project	Book+M oodle
	39	Common Gate configuration	5	Classroom	Classroom	Synchr onous	Written quiz Project	Book+M oodle
14	40	AC analysis, Voltage divider	5	Classroom	Classroom	Synchr onous	Written quiz Project	Book+M oodle
	41	Design Problem	5	Classroom	Classroom	Synchr onous	Written quiz Project	Book+M oodle
	42	Construction of Photodiodes, Phototransistors, and Photoresistors, Semiconductor materials used, Structure and doping profile	5	Classroom	Classroom	Synchr onous	Written quiz Project	Book+M oodle
15	43	Operation Principles Photovoltaic mode vs. photoconductive mode (for photodiodes and phototransistors) ,Resistance change mechanism (for photoresistors)	5	Classroom	Classroom	Synchr onous	Written quiz Project	Book+M oodle
	44	Characteristic Curves of Photodiodes, Phototransistors: Current- voltage (I-V) characteristics, Light vs. current (L-I) characteristics, Resistance vs. light intensity characteristics	5, 6	Classroom	Classroom	Synchr onous	Written quiz Project	Book+M oodle
	45	Examples and practice problems for circuit design	7	Classroom	Classroom	Synchr onous	Written quiz Project	Book+M oodle

24. Evaluation Methods:

Opportunities to demonstrate achievement of the ILOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	ILO/s Linked to the Evaluation activity	Period (Week)	Platform
In-class participation	20	TBA		TBA	Verbal evaluation

Midterm Exam	30	Midterm material	TBA	On campus
Final Exam	50	Post Midterm material	TBA	On campus
Total	100%			

25. Course Requirements (e.g: students should have a computer, internet connection, webcam, account on a specific software/platform...etc):

Each student should have a Textbook, Computer, Internet access & Scientific calculator.

26. Course Policies:

A- Attendance policies: Attendance will be taken every class and University policy will be enforced. B- Absences from exams and submitting assignments on time: Absence not allowed and no Late submission.

C- Health and safety procedures: As per University policy

D- Honesty policy regarding cheating, plagiarism, misbehavior: Not tolerated as per University p olicy

E- Grading policy: As mentioned in Evaluation Methods above.

F- Available university services that support achievement in the course: Platforms, Instructor support, Administrative support.

27. References:

A- Required book(s), assigned reading and audio-visuals:

 Text book: "Electronic Devices and Circuit Theory" by Robert L. Boylestad and Louis Nashelsky - Another popular textbook that covers the fundamentals of electronic devices and circuits..

B- Recommended books, materials, and media: Reference books:

- 1. "Microelectronic Circuits" by Adel S. Sedra and Kenneth C. Smith A comprehensive textbook covering the basics of electronic circuits, including semiconductor devices and their applications.
- 2. "Fundamentals of Electric Circuits" by Charles K. Alexander and Matthew N.O. Sadiku This textbook provides a solid foundation in electric circuits, including analysis and design principles.
- 3. "Practical Electronics for Inventors" by Paul Scherz and Simon Monk A practical guide for beginners and hobbyists interested in electronics, covering basic concepts and practical circuits.
- 4. "The Art of Electronics" by Paul Horowitz and Winfield Hill Considered a classic in the field, this book covers a wide range of topics in electronics with an emphasis on practical circuit design.
- 5. **Online Resources:** Websites like All About Circuits (<u>https://www.allaboutcircuits.com/</u>) and Electronics Hub (<u>https://www.electronicshub.org/</u>) offer tutorials, articles, and circuit examples for learning electronics.

28. Additional information:

Name of the Instructor or the Course Coordinator: Prof. Riad Taha Al-Kasasbeh Name of the Head of Quality Assurance Committee/ Department	Signature: Signature:	Date: 21/3/2024 Date:
Name of the Head of Department	Signature:	Date:

Name of the Head of Quality Assurance Committee/ School or Center	Signature:	Date:
Name of the Dean or the Director	Signature:	Date: