
Academic Year:	2025 / 2026
Semester:	Fall
Course:	0917439 Computer Organization Lab 1 Credit / Dept. Obligatory
Catalog Description:	Using CAD tools, the student designs and simulates the main parts of a computer: the ALU, registers, control unit, cache memory, system bus, memory, and I/O devices. Integration and simulation of computer design..
Prerequisite(s):	Digital Logic Lab 0917432 Computer Architecture and Organization (1) 0917335
Co-requisite(s):	Computer Architecture and Organization (1) 0917335
Background:	Students are assumed to have sufficient knowledge pertaining to digital logic design, RISC-V instruction set architecture, computer arithmetic, processor datapath and control design, and single-cycle and pipelined implementations of processors..
Textbooks:	<ul style="list-style-type: none">Patterson and Hennessy. Computer Organization & Design RISC-V Edition: The Hardware/Software Interface, 2nd ed., Morgan Kaufmann, 2020..
References:	<ul style="list-style-type: none">Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 6th ed., Morgan Kaufmann, 2017.J. Hayes. Computer Architecture and Organization, 3rd ed., McGraw-Hill, 1998.M. Mano. Computer System Architecture, 3rd ed., Prentice Hall, 1993.
Course Website:	Microsoft Teams Includes lab resources such as: 1- Verilog Manual: D. Hyde, Handbook on Verilog HDL 2- Experiments descriptions 3- The basic Verilog library used (lib439.v)
Schedule & Duration:	16 weeks, 12 sessions, 180 minutes each, including exams.
Student Material:	Textbook, lab handouts, some instructor keynotes, calculator and access to a personal computer and internet.
Facilities:	Lab with whiteboard and projection display facilities, personal computers, and server.
Course Objectives:	<ul style="list-style-type: none">Introduce the students to Verilog, a hardware description language the modeling and simulation of logic circuits.Use Verilog to implement and simulate a single-cycle processor that can execute ALU operations, loads and stores, branches and jumps.Use Verilog to implement and simulate a 5-stage pipelined processor that can execute the same instructions as above.

Course Outcomes and Relation to ABET Program Outcomes:

Upon successful completion of this course, a student should be able to:

- Write Verilog programs to describe the datapath and control of single-cycle and pipelined processors [SO1, SO2, SO6].
- Carry out experiments to validate designs of a processor and to assess its performance [SO6].

Lab Schedule:

Week of	Date	Activity/Experiment
1	05/10/25	Lab Preparations
2	12/10/25	Exp 0: Syllabus Distribution & Introduction to Verilog Exp 1: Introduction to Verilog Pro
3	19/10/25	Exp 2: ALU Design
4	26/10/25	Exp 3: Register File
5	02/11/25	Exp 4: Memory Units + Quiz
6	09/11/25	Exp 5: Control Unit
7	16/11/25	Exp 6: Single-Cycle Implementation
8	23/11/25	Break or Midterm Exam
9	30/11/25	Break or Midterm Exam
10	07/12/25	Exp 7: Pipelining Implementation
11	14/12/25	Exp 8: Resolving Data Hazards
12	21/12/25	Exp 9: Resolving Control Hazards
13	28/12/25	Project
14	04/01/26	Project Submission
15	11/01/26	Final Exam

Computer Usage:

In-lab computers to write Verilog programs to describe the datapath and control of single-cycle and pipelined processors.

Policies:

- Attendance is required. Lab attendance will be taken every lab and the university's policies will be enforced in this regard.
- Preparation for each experiment is required before the lab time.
- All submitted work must be yours.
- Cheating will not be tolerated.
- However, it is allowed to discuss experiments with other students in the class or getting verbal advice/help from students who have already taken the course. But any sharing of code is not allowed.
- Check department announcements for general department announcements at: <http://www.facebook.com/pages/Computer-Engineering-Department/369639656466107>

Assessment Tools & Grading:

<input checked="" type="checkbox"/> Pre-Lab Preparations and In-lab Assessment	15%
<input checked="" type="checkbox"/> Midterm Exam	30%
<input checked="" type="checkbox"/> Project and Quiz	15%
<input checked="" type="checkbox"/> Final Exam	40%

Instructor(s):

- Eng. Amal Quzmar, a.quzmar@ju.edu.jo

Section(s):

- Section 2: Tuesday 1:30-4:30 pm, Computer Design Lab
- Section 3: Wednesday 1:00-4:00 pm, Computer Design Lab

Student Outcomes (SO)

- SO1.** An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
- SO2.** An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
- SO3.** An ability to communicate effectively with a range of audiences.
- SO4.** An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
- SO5.** An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
- SO6.** An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
- SO7.** An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Last modified: October 1, 2025