
Page 1 of 16 
 

Experiment 2 
Introduction to Altera and Schematic Programming 

Prepared by:        Eng. Shatha Awawdeh, Eng.Eman Abu_Zaitoun 

  
IInnttrroodduuccttiioonn::  

This tutorial introduces the basic features of the Quartus II software. It shows how the software can 
be used to design and implement a circuit specified by using the means of a schematic diagram. It makes 
use of the graphical user interface to invoke the Quartus II commands. 

  
OObbjjeeccttiivveess::  
 Creating a project. 
• Design entry using schematic diagram. 
• Assigning the circuit inputs and outputs to specific pins on the FPGA. 
• Simulating the designed circuit. 
• Programming and configuring the FPGA device. 
  

11--  GGeettttiinngg  SSttaarrtteedd::  
Each logic circuit, or sub circuit, being designed with Quartus II software is called a project. The 

software works on one project at a time and keeps all information for that project in a single directory 
(folder) in the file system. 
 

To begin a new logic circuit design, the first step is to create a directory to hold its files. To hold 
the design files for this lab, we will use a directory Exp2. The running example for this Experiment is a 
simple circuit for Xor gate (A XOR B = (A& (~B)) | ((~A) &B)). 
 

Start the Quartus II software. You should see a display similar to the one in Figure 1. This display 
consists of several windows that provide access to all the features of Quartus II software, which the user 
selects with the computer mouse. Most of the commands provided by Quartus II software can be accessed 
by using a set of menus that are located below the title bar (File, Edit, view, project…). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. The main Quartus II display. 

 
 

11



Page 2 of 16 
 

1.1 Quartus II Online Help 
 Quartus II software provides comprehensive online documentation that answers many of the questions 
that may arise when using the software. The documentation is accessed from the Help menu. To get some 
idea of the extent of documentation provided, it is worthwhile for the reader to browse through the Help 
menu. For instance, selecting Help > How to Use Help gives an indication of what type of help is provided. 
The user can quickly search through the Help topics by selecting Help > Search, which opens a dialog box 
into which keywords can be entered. Another method, context-sensitive help, is provided for quickly 
finding documentation for specific topics. While using most applications, pressing the F1 function key on 
the keyboard opens a Help display that shows the commands available for the application. 
 

22--  SSttaarrttiinngg  aa  NNeeww  PPrroojjeecctt  
 To start working on a new design we first have to define a new design project. Quartus II software 
makes the designer’s task easy by providing support in the form of a wizard.  
 
1. Create a new project; select File > New Project Wizard to reach the window in Figure 2b, which asks 
for the name and directory of the project. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2a. Creation of a new project. 
2. Set the working directory to be Exp2, The project must have a name, which is usually the same as the 
top-level design entity (schematic circuit) that will be included in the project. Choose Xor1 as the name for 
both the project and the top-level entity, as shown in Figure 2b.  
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2b. Creation of a new project. 
 



Page 3 of 16 
 

 
 Press Next. Since we have not yet created the directory Exp2, Quartus II software displays the pop-up 
box in Figure 3 asking if it should create the desired directory. Click Yes, which leads to the window in 
Figure 4. 
 
 
 
 
 

Figure 3. Quartus II software can create a new directory for the project. 
 

3. The wizard makes it easy to specify which existing files (if any) should be included in the project. 
Assuming that we do not have any existing files, click Next, which leads to the window in Figure 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4. The wizard can include user-specified design files. 
 

4. We have to specify the type of device in which the designed circuit will be implemented. Choose 
CycloneII as the target device family. We can let Quartus II software select a specific device in the family, 
or we can choose the device explicitly. We will take the latter approach. From the list of available devices, 
choose the device called EP2C70F896C6 which is the FPGA used on Altera’s DE2 board. Press Next, 
which opens the window in Figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5. Choose the device family and a specific device 



Page 4 of 16 
 

5. The user can specify any third-party tools that should be used. A commonly used term for CAD software 
for electronic circuits is EDA tools, where the acronym stands for Electronic Design Automation. This 
term is used in Quartus II messages that refer to third-party tools, which are the tools developed and 
marketed by companies other than Altera. Since we will rely solely on Quartus II tools, we will not choose 
any other tools. Press Next. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 6. Other EDA tools can be specified. 
 
6. A summary of the chosen settings appears in the screen shown in Figure 7. Press Finish, which returns 
to the main Quartus II window, but with Xor specified as the new project, in the display title bar, as 
indicated in Figure 8. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 7. Summary of the project settings.   Figure 8. The Quartus II display for the created project. 
 

33--  DDeessiiggnn  EEnnttrryy  UUssiinngg  tthhee  GGrraapphhiicc  EEddiittoorr  
As a design example, we will use the Xor circuit shown in Figure 9. The circuit has two input 

switches x1 and x2, where a closed switch corresponds to the logic value 1. The truth table for the circuit is 
also given in the figure. 
 
 
 
 
 
 
 

 
Figure 9. The Xor function circuit. 

X1 X2 f 
0 0 0 
0 1 1 
1 0 1 
1 1 0 



Page 5 of 16 
 

The Quartus II Graphic Editor can be used to specify a circuit in the form of a block diagram. 
Select File > New to get the window in Figure 10, choose Block Diagram/Schematic File, and click OK. 
This opens the Graphic Editor window.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Choose to prepare a block diagram 

 
The first step is to specify a name for the file that will be created. Select File > Save As to open the 

pop-up box depicted in Figure 11. In the box labeled Save as type choose Block Diagram/Schematic File 
(*.bdf). In the box labeled File name type Xor1, to match the name given in Figure 2b, which was 
specified when the project was created. Put a checkmark in the box Add file to current project. Click 
Save, which puts the file into the directory Exp2 and leads to the Graphic Editor window displayed in 
Figure 12. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Name the file. 
 
 
 
 
 
  
 
 
 
 
 
 
 

 
             Figure 12. Graphic Editor window. 



Page 6 of 16 
 

 
3.1 Importing Logic-Gate Symbols 

The Graphic Editor provides a number of libraries which include circuit elements that can be 
imported into a schematic. Double-click on the blank space in the Graphic Editor window, or click on the 
icon in the toolbar that looks like an AND gate. A pop-up box in Figure 13 will appear.  

Expand the hierarchy in the Libraries box as shown in the figure. First expand libraries, and then 
expand the library primitives, followed by expanding the library logic which comprises the logic gates. 
Select and2, which is a two-input AND gate, and click OK. Now, the AND gate symbol will appear in the 
Graphic Editor window. Using the mouse, move the symbol to a desirable location and click to place it 
there. 

Import the second AND gate, which can be done simply by positioning the mouse pointer over the 
existing AND-gate symbol, right-clicking, and dragging to make a copy of the symbol. A symbol in the 
Graphic Editor window can be moved by clicking on it and dragging it to a new location with the mouse 
button pressed. Next, select or2 from the library and import the OR gate into the diagram. Then, select not 
and import two instances of the NOT gate. Rotate the NOT gates into proper position by using the “Rotate 

left 90" icon. Arrange the gates as shown in Figure 14. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. Choose a symbol from the library. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14. Import the gate symbols into the Graphic Editor window. 
 

3.2 Importing Input and Output Symbols 
Having entered the logic-gate symbols, it is now necessary to enter the symbols that represent the 

input and output ports of the circuit. Use the same procedure as for importing the gates, but choose the port 
symbols from the library primitives/pin. Import two instances of the input port and one instance of the 
output port, to obtain the image in Figure 15. 



Page 7 of 16 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15. Import the input and output pins. 
 

Assign names to the input and output symbols as follows. Make sure nothing is selected by 
clicking on an empty spot in the Graphic Editor window. Point to the word pin_name on the top input 
symbol and double-click the mouse. The dialog box in Figure 16 will appear. Type the pin name, x1, and 
click OK. Similarly, assign the name x2 to the other input and f to the output. Alternatively, it is possible 
to change the name of an element by selecting it first, and then double-clicking on the name and typing a 
new one directly. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16. Naming of a pin. 
  
3.3 Connecting Nodes with Wires 

The symbols in the diagram have to be connected by drawing lines (wires). Click on the icon in 
the toolbar to activate the Orthogonal Node Tool. Position the mouse pointer over the right edge of the x1 
input pin. Click and hold the mouse button and drag the mouse to the right until the drawn line reaches 
the pinstub on the top input of the AND gate. Release the mouse button, which leaves the line connecting 
the two pinstubs. Next, draw a wire from the input pinstub of the leftmost NOT gate to touch the wire that 
was drawn above it. Note that a dot will appear indicating a connection between the two wires. 

 
Use the same procedure to draw the remaining wires in the circuit. If a mistake is made, a wire can 

be selected by clicking on it, and removed by pressing the Delete key on the keyboard. Upon completing 
the diagram, click on the icon , to activate the Selection Tool. Now, changes in the appearance of the 
diagram can be made by selecting a particular symbol or wire and either moving it to a different location or 
deleting it. The final diagram is shown in Figure 17; save it. 

 
 
  



Page 8 of 16 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17. The completed schematic diagram. 
 

44--  CCoommppiilliinngg  tthhee  DDeessiiggnneedd  CCiirrccuuiitt  
 

The entered schematic diagram file, Xor.bdf, is processed by several Quartus II tools that analyze 
the file, synthesize the circuit, and generate an implementation of it for the target chip. These tools are 
controlled by the application program called the Compiler. 

Run the Compiler by selecting Processing > Start Compilation, or by clicking on the toolbar icon 
that looks like a purple triangle . As the compilation moves through various stages, its progress is 
reported in a window on the left side of the Quartus II display. Successful (or unsuccessful) compilation is 
indicated in a pop-up box. 

Acknowledge it by clicking OK, which leads to the Quartus II display in Figure 18. In the message 
window, at the bottom of the figure, various messages are displayed. In case of errors, there will be 
appropriate messages given. 

 
When the compilation is finished, a compilation report is produced. A window showing this report 

is opened automatically, as seen in Figure 18. The window can be resized, maximized, or closed in the 
normal way, and it can be opened at any time either by selecting Processing > Compilation Report or by 
clicking on the icon       . 

The report includes a number of sections listed on the left side of its window. Figure 18 displays 
the Compiler Flow Summary section, which indicates that only one logic element and three pins are 
needed to implement this tiny circuit on the selected FPGA chip. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18. Display after a successful compilation. 



Page 9 of 16 
 

 
 In the case of unsuccessful compilation, Figure 19 shows the compilation report (Flow Summary). 
 
 
 
  
 
 
   
 
 
 
 

 
 
 
 

Figure 19. Compilation report for the failed design. 
 

 
In the message tab, all errors will be shown, see Figure 20 
 

 
 

 
  

 
 
 

 Figure 20. Error messages.                            . 
 
 
 
  
 
 
 
 
 

 
 
   

Figure 21. Identifying the location of the error. 
 

After correcting all errors, recompile the circuit. 
 

 

  
55--  SSiimmuullaattiinngg  tthhee  DDeessiiggnneedd  CCiirrccuuiitt  
  

Before implementing the designed circuit in the FPGA chip on the DE2 board, it is prudent to 
simulate it to ascertain its correctness. Quartus II software includes a simulation tool that can be used to 
simulate the behavior of a designed circuit. Before the circuit can be simulated, it is necessary to create the 
desired waveforms, called test vectors, to represent the input signals. It is also necessary to specify which 
outputs, as well as possible internal points in the circuit, the designer wishes to observe. The simulator 
applies the test vectors to a model of the implemented circuit and determines the expected response. We 
will use the Quartus II Waveform Editor to draw the test vectors, as follows: 



Page 10 of 16 
 

 
1. Open the Waveform Editor window by selecting File > New>Other Files tab, which gives the window 
shown in Figure 26.Choose Vector Waveform File and click OK. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 Figure 26. Need to prepare a new file. 
 
2. The Waveform Editor window is depicted in Figure 27. Save the file under the name Xor.vwf; note that 
this changes the name in the displayed window. Set the desired simulation to run from 0 to 200 ns by 
selecting Edit > End Time and entering 200 ns in the dialog box that pops up. Selecting View > Fit in 
Window displays the entire simulation range of 0 to 200 ns in the window, as shown in Figure 28. You 
may wish to resize the window to its maximum size. 
  
 
 
 
 
 

 
 
 
 
 
 Figure 27. The Waveform Editor window. 
 
 
 
 
 
 
 
 
 
 
 

Figure 28. The augmented Waveform Editor window. 
3. Next, we want to include the input and output nodes of the circuit to be simulated. Click Edit > Insert> 
Insert Node or Bus to open the window in Figure 29. 
 
 
 
 
 
 
 
 



Page 11 of 16 
 

 
 

Figure 29. The Insert Node or Bus dialogue. 
 

It is possible to type the name of a signal (pin) into the Name box, but it is easier to click on the 
Node Finder button to open the window in Figure 30. The Node Finder utility has a filter used to indicate 
what type of nodes are to be found. Since we are interested in input and output pins, set the filter to Pins: 
all. Click the List button to find the input and output nodes as indicated on the left side of the figure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 30. Selecting nodes to insert into the Waveform Editor. 
. 

Click on the x1 signal in the Nodes Found box in Figure 30, and then click the  >  sign to add it to 
the Selected Nodes box on the right side of the figure. Do the same for x2 and f. Click OK to close the 
Node Finder window, and then click OK in the window of Figure 29. This leaves a fully displayed 
Waveform Editor window, as shown in Figure 31. If you did not select the nodes in the same order as 
displayed in Figure 31, it is possible to rearrange them. To move a waveform up or down in the Waveform 
Editor window, click on the node name (in the Name column) and release the mouse button. The 
waveform is now highlighted to show the selection. Click again on the waveform and drag it up or down in 
the Waveform Editor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 31. The nodes needed for simulation. 
4. We will now specify the logic values to be used for the input signals x1 and x2 during simulation. The 
logic values at the output f will be generated automatically by the simulator. To make it easy to draw the 
desired waveforms, the Waveform Editor displays (by default) vertical guidelines and provides a drawing 
feature that snaps on these lines (which can otherwise be invoked by choosing View > Snap to Grid). 
Observe also a solid vertical line, which can be moved by pointing to its top and dragging it horizontally. 
This reference line is used in analyzing the timing of a circuit; move it to the time = 0 position.  
The waveforms can be drawn using the Selection Tool, which is activated by selecting the icon        in the 
toolbar, or the Waveform Editing Tool, which is activated by the icon     . . 
 

To simulate the behavior of a large circuit, it is necessary to apply a sufficient number of input 
valuations and observe the expected values of the outputs. In a large circuit the number of possible input 



Page 12 of 16 
 

valuations may be huge, so in practice we choose a relatively small (but representative) sample of these 
input valuations. 

 
However, for our tiny circuit we can simulate all different combinations (00, 01, 10, 11) given in 

Figure 9. We will use four 50-ns time intervals to apply the four test vectors. We can generate the desired 
input waveforms as follows. Click on the waveform name for the x1 node. Once a waveform is selected, 
the editing commands in the Waveform Editor can be used to draw the desired waveforms. Commands are 
available for setting a selected signal to 0, 1, unknown (X), high impedance (Z), don’t care (DC), inverting 
its existing value (INV), or defining a clock waveform. Each command can be activated by using the Edit 
> Value command or via the toolbar for the Waveform Editor. The Edit menu can also be opened by 
right-clicking on a waveform name. 

 
Set x1 to 0 in the time interval 0 to 100 ns, which is probably already set by default. Next, set x1 to 

1 in the time interval 100 to 200 ns. Do this by pressing the mouse at the start of the interval and 
dragging it to its end, which highlights the selected interval, and choosing the logic value 1 in the 
toolbar. Make x2 = 1 from 50 to 100 ns and also from 150 to 200 ns, which corresponds to the truth table 
in Figure 9. This should produce the image in Figure 32. Observe that the output f is displayed as having 
an unknown value at this time, which is indicated by a hashed pattern; its value will be determined during 
simulation. Save the file as Xor1.vwf. 

 
 
 
  
 
 
 
 

Figure 32. Setting of test values. 
 

5.1 Performing the Simulation 
 

A designed circuit can be simulated in two ways. The simplest way is to assume that logic elements 
and interconnection wires in the FPGA are perfect, thus causing no delay in propagation of signals through 
the circuit. This is called Functional simulation. A more complex alternative is to take all propagation 
delays into account, which leads to Timing simulation. Typically, functional simulation is used to verify 
the functional correctness of a circuit as it is being designed. This takes much less time, because the 
simulation can be performed simply by using the logic expressions that define the circuit. 
 
   5.1.1 Functional Simulation 
 

To perform the functional simulation select Assignments > Settings to open the Settings window, 
on the left side of this window click on Simulator Settings to display the window in Figure 33, choose 
Functional as the simulation mode, choose Xor1.vwf as the simulation input, and click OK. The 
Quartus II simulator takes the inputs and generates the outputs defined in the Xor.vwf file.  

 
 
 
 
 
 
 
 
 
 
 
 
 



Page 13 of 16 
 

 
 
 
 

Figure 33. Specifying the simulation mode. 
 

Before running the functional simulation it is necessary to create the required netlist; select 
Processing > Generate Functional Simulation Netlist. A simulation run is started by Processing > Start 
Simulation. At the end of the simulation, Quartus II software indicates its Successful completion and 
displays a Simulation Report illustrated in Figure 34. If your report window does not show the entire 
simulation time range, click on the report window to select it and choose View > Fit in Window. 
Observe that the output f is as specified in the truth table of Figure 9. 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 34. The result of functional simulation. 
 

   5.1.2 Timing Simulation 
Having ascertained that the designed circuit is functionally correct, we should now perform the 

timing simulation to see how it will behave when it is actually implemented in the chosen FPGA device. 
Select Assignments > Settings > Simulator Settings to get to the window in Figure 33, choose Timing as 
the simulation mode, choose Xor1.vwf as the simulation input, and click OK. Run the simulator, which 
should produce the waveforms in Figure 35. Observe that there is a delay of about 6 ns in producing a 
change in the signal f from the time when the input signals, x1 and x2, change their values. This delay is 
due to the propagation delays in the logic element and the wires in the FPGA device. 
 
 
 
  
 
 
 
  
 
 
 
 
 

Figure 35. The result of timing simulation. 
 

66--  PPiinn  AAssssiiggnnmmeenntt  
 

During the compilation above, the Quartus II Compiler was free to choose any pins on the selected 
FPGA to serve as inputs and outputs. However, the DE2 board has hardwired connections between the 
FPGA pins and the other components on the board. We will use two toggle switches, labeled SW10 and 
SW11, to provide the external inputs, x1 and x2, to our example circuit. These switches are connected to 
the FPGA pins W5 and V10, respectively. We will connect the output f to the red light-emitting diode 
labeled LEDR10, which is hardwired to the FPGA pin AC13. 

Pin assignments are made by using the Assignment Editor. Select Assignments > Assignment 
Editor to reach the window in Figure 22. 



Page 14 of 16 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 22. The Assignment Editor window. 
 

Under Category select Pin. Double-click on the entry <<new>> which is highlighted in blue in 
the column labeled To. The drop-down menu in Figure 23 will appear. Click on x1 as the first pin to be 
assigned; this will enter x1 in the displayed table. Follow this by double-clicking on the box to the right of 
this new x1 entry, in the column labeled Location. Now, the drop-down menu in Figure 24 appears. 

 
 
  

 
 
 

Figure 23. The drop-down menu displays the input and output names. 
 

 Scroll down and select PIN_W5. Instead of scrolling down the menu to find the desired pin, you 
can just type the name of the pin (W5) in the Location box. Use the same procedure to assign input x2 to 
pin V10 and output f to pin AC13, which results in the image in Figure 25. 
 
 
  
 
 
 
 
 
 
 
 
 Figure 24. The available pins. 
 
 
 
 
 
 
 
 
 
 
 

Figure 25. The complete assignment. 
 



Page 15 of 16 
 

To save the assignments made, choose File > Save. You can also simply close the Assignment 
Editor window, in which case a pop-up box will ask if you want to save the changes to assignments; click 
Yes. Recompile the circuit, so that it will be compiled with the correct pin assignments. 
 

77--  PPrrooggrraammmmiinngg  aanndd  CCoonnffiigguurriinngg  tthhee  FFPPGGAA  DDeevviiccee  
The FPGA device must be programmed and configured to implement the designed circuit. The 

required configuration file is generated by the Quartus II Compiler’s Assembler module. Altera’s DE2 

board allows the configuration to be done in two different ways, known as JTAG and AS modes. The 
configuration data is transferred from the host computer (which runs the Quartus II software) to the board 
by means of a cable that connects a USB port on the host computer to the leftmost USB connector on the 
board. To use this connection, it is necessary to have the USB-Blaster driver installed. Before using the 
board, make sure that the USB cable is properly connected and turn on the power supply switch on the 
board. 

In the JTAG mode, the configuration data is loaded directly into the FPGA device. The acronym 
JTAG stands for Joint Test Action Group. This group defined a simple way for testing digital circuits and 
loading data into them, which became an IEEE standard. If the FPGA is configured in this manner, it will 
retain its configuration as long as the power remains turned on. The configuration information is lost when 
the power is turned off. The second possibility is to use the Active Serial (AS) mode. In this case, a 
configuration device that includes some flash memory is used to store the configuration data. Quartus II 
software places the configuration data into the configuration device on the DE2 board. Then, this data is 
loaded into the FPGA upon power-up or reconfiguration. 

Thus, the FPGA need not be configured by the Quartus II software if the power is turned off and 
on. The choice between the two modes is made by the RUN/PROG switch on the DE2 board. The RUN 
position selects the JTAG mode, while the PROG position selects the AS mode. 
 
7.1 JTAG Programming 
 

The programming and configuration task is performed as follows. Flip the RUN/PROG switch 
into the RUN position. Select Tools > Programmer to reach the window in Figure 36. Here it is 
necessary to specify the programming hardware and the mode that should be used. If not already chosen by 
default, select JTAG in the Mode box. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 36. The Programmer window. 
 

Also, if the USB-Blaster is not chosen by default, press the Hardware Setup... button and select 
the USB-Blaster in the window that pops up, as shown in Figure 37. 
 
 

 
 
 



Page 16 of 16 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 37. The Hardware Setup window. 
 

In Figure 36, observe that the configuration file Xor1.sof is listed in the window. If the file is not 
already listed, then click Add File and select it. This is a binary file produced by the Compiler’s Assembler 
module, which contains the data needed to configure the FPGA device. The extension .sof stands for 
SRAM Object File. Note also that the device selected is EP2C70F896C6, which is the FPGA device used 
on the DE2 board. Click on the Program/Configure check box. Now, press Start button. A LED on the 
board will light up when the configuration data has been downloaded successfully. If you see an error 
reported by Quartus II software indicating that programming failed, check to ensure that the board is 
properly powered on. 



 

 

 

 

 

 

University of Jordan 

Faculty of Engineering and Technology 

Department of Computer Engineering 

Digital Logic Laboratory 0907234 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Name: 

 

Student ID: 

 

Section: 

 

 

 

 

 

 

 

 

 

 

 

 

Labsheet 1:  Introduction to Altera and Schematic Programming 
 



Part 1: (In lab) 
You are required to build the schematic diagram for the following function: 

𝐹(𝑋, 𝑌) =  𝑋. 𝑌̅̅ ̅̅ ̅ 

You have to follow the instructions below:  

1. Create a new project.  
2. Build the schematic of the function. 

Paste a snap-shot of your schematic here: 

 

 

 

 

 

 

 

 

 
  

3. Compile the project.  
4. Perform Functional simulation for the function. 

Paste a snap-shot of your entire simulation here: 

 

 

 

 

 

 

 

 

 

 



Part 2: (In lab) 
You are required to build the schematic diagram for the following function:  

𝐹(𝐴, 𝐵, 𝐶) = (𝐴. 𝐶) + 𝐵 

You have to follow the instructions below:  

1. Create new project.  
2. Build the schematic of the function.  

Paste a snap-shot of your schematic here: 

 

 

 

 

 

 

 

 

 
 

3. Compile the project.  
4. Perform Timing simulation for the function. 

Paste a snap-shot of your entire simulation here: 

 

 

 

 

 

 

 

 

 

 
 



5. Perform the following pin assignments then download your design on the FPGA. 

 A : SW [3] (Pin_AC27)  
 B : SW [2] (Pin_AB25)  
 C : SW [1] (Pin_AB26)  

 F : LEDR [0] (Pin_AJ6) 

6. For the following switch combinations, determine the status of the LEDR[0] as you see it on the FPGA to 
verify the correctness of your design: 

SW[3] SW[2] SW[1] LEDR[0] (On or Off) 

0 0 1  

0 1 1  

1 0 1  

 

 



Experiment 3 
Introduction to Verilog Programming using Quartus II software 

Prepared by:        Eng. Shatha Awawdeh, Eng.Eman Abu_Zaitoun 

  
IInnttrroodduuccttiioonn::  
 Verilog HDL is a hardware description language used to design electronic systems. Verilog HDL 
allows designers to design at various levels of abstraction. It is the most widely used HDL with a user 
community of more than 50,000 active designers. 

This tutorial shows how the Quartus II software can be used to design and implement a circuit 
specified by using the Verilog hardware description language.  
 

OObbjjeeccttiivveess::  
• Creating a project using Quartus II software. 
• Design entry using Verilog code. 
• Assigning the circuit inputs and outputs to specific pins on the FPGA. 
• Simulating the designed circuit. 
• Programming and configuring the FPGA device. 
 

  WWhhaatt  iiss  VVeerriilloogg??  
 Verilog is one of the two major Hardware Description Languages (HDL) used by hardware designers in 
industry and academia. VHDL is the other one. 
 The Verilog language describes a digital system as a set of modules. Each of these modules has input(s) 
and output(s). Usually we place one module per file but that is not a requirement.   
Note: Verilog is case sensitive 
 
The structure of a module is the following: 
 

module <module name> (<port list>); 
<declares> 
<module items> 
endmodule 
 

• The <module name> is an identifier that uniquely names the module.  

• The <port list> is a list of input and output ports.  

• The <declares> section specifies data objects as inputs, outputs, or wires. 

• The <module items> may be assignments or instances of modules. 
 

Modules can represent pieces of hardware ranging from simple gates to complete systems. Modules 
can either be specified behaviorally or structurally (or a combination of the two). 

  
- A behavioral specification defines the behavior of a digital system (module) using traditional 

programming language constructs, e. g., ifs, whiles, assignment statements.  
 
Example: 
// Behavioral Model of a Nand gate 
module NAND(in1,in2, out); 
input in1, in2; 
output out; 
// continuous assign statement 
assign out = ~(in1 & in2); 
endmodule 
 
 

Page 1 of 5  

2



In the above example: 
<module name>: NAND 
<port list>: in1,in2,out 
<Declares>:  input in1, in2; 

output out; 
<module items>: assign out = ~(in1 & in2); 
 
Note: The continuous assignment assign continuously watches for changes to variables in its right hand 
side and whenever that happened the right hand side is re-evaluated and the result immediately propagated 
to the left hand side (out). 
 

- Structural specification expresses the behavior of a digital system (module) as a hierarchical 
interconnection of sub modules.  

Here is a structural specification of a module AND obtained by connecting the output of one NAND to 
both inputs of another one. 
 
module AND(in1, in2, out); 
// Structural model of AND gate from two NANDS 
input in1, in2; 
output out; 
wire w1; 
// two instantiations of the module NAND 
NAND NAND1 (in1, in2, w1); 
NAND NAND2 (w1, w1, out); 
endmodule 
 
This module has two instances of the NAND module called NAND1 and NAND2 connected together by 
an internal wire w1. 
The general form to invoke an instance of a module is: 

<module name> <instance name> (<port list>); 
 
 

  QQuuaarrttuuss  IIII  IInnttrroodduuccttiioonn  UUssiinngg  VVeerriilloogg  DDeessiiggnn::  
The following example makes use of the Verilog design entry method, in which the user specifies the 
desired circuit in the Verilog hardware description language. 
 

1-Getting Started: 
Follow the steps in the previous experiment to create new project, and name it Xor1. 
 

2-Using the Quartus II Text Editor: 
1-Select File > New to get the window in Figure 1, then choose Verilog HDL File and click OK. This 
opens the Text Editor window in Figure 2.  
 

 
 

 
 
 
 
 
 
 
 
 
 

Figure (1) 

Page 2 of 5  



 
 
 
 
 
 
 
 
 
 
 
 

Figure (2) 
 
2- Specify the name for the file that will be created. Select File > Save As to open the pop-up box depicted 
in Figure 3. 

In the box labeled Save as type choose Verilog HDL File. In the box labeled File name type 
Xor1. Put a checkmark in the box Add file to current project. Click Save, which puts the file into the 
directory Exp2 and leads to the Text Editor window shown in Figure (4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (3) 
 
 
 
 
 
 
 
 
 
 
 

Figure (4) 
 
3- Enter the Verilog code as shown in Figure 5. Then save the file by choosing File > Save, or by typing 
the shortcut Ctrl-s. 
 
 
 

Page 3 of 5  



 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (5) 
Using Verilog Templates 

The syntax of Verilog code is sometimes difficult for a designer to remember. To help with this 
issue, the Text Editor provides a collection of Verilog templates. The templates provide examples of 
various types of Verilog statements, such as a module declaration, an always block, and assignment 
statements. It is worthwhile to browse through the templates by selecting Edit > Insert Template > 
Verilog HDL to become familiar with this resource. 
 
3-Compiling the Designed Circuit: 
Refer to Experiment 2. 
 
Errors 

Quartus II software displays messages produced during compilation in the Messages window. If the 
Verilog design file is correct, one of the messages will state that the compilation was successful and that 
there are no errors. 

If the Compiler does not report zero errors, then there is at least one mistake in the Verilog code. In 
this case a message corresponding to each error found will be displayed in the Messages window. Double-
clicking on an error message will highlight the offending statement in the Verilog code in the Text Editor 
window. Similarly, the Compiler may display some warning messages. Their details can be explored in the 
same way as in the case of error messages. The user can obtain more information about a specific error or 
warning message by selecting the message and pressing the F1 function key. 

To see the effect of an error, open the file Xor1.v. Remove the semicolon in the assign statement, 
illustrating a typographical error that is easily made. Compile the erroneous design file by clicking on the 
icon. A pop-up box will ask if the changes made to the Xor1.v file should be saved; click Yes. After trying 
to compile the circuit, Quartus II software will display a pop-up box indicating that the compilation was 
not successful. Acknowledge it by clicking OK. The compilation report summary, now confirms the failed 
result. Expand the Analysis & Synthesis part of the report and then select Messages to have the messages 
displayed as shown in Figure 6. 
 
. 
 
 
 
 
 
 
 
 
 

Figure 6 
Double-click on the first error message. Quartus II software responds by opening the Xor1.v file 

and highlighting the statement which is affected by the error. Correct the error and recompile. 

Page 4 of 5  



4-Pin Assignment: 
Refer to Experiment 2. 
 
5- Simulating the Designed Circuit 
Refer to Experiment 2. 
 
6 -Programming and Configuring the FPGA Device 
Refer to Experiment 2. 
 
Note: 
If you want to implement the Xor module using structural modeling do the following: 
 
1. Write the primitive needed modules (AND, OR, INV) in a separate file name it (lib.v)  
 
module ANDGATE(in1, in2, out); 
input in1, in2; 
output out; 
assign out= in1&in2; 
endmodule 
 
module ORGATE(in1, in2, out); 
input in1, in2; 
output out; 
assign out= in1|in2; 
endmodule 
 
module INVGATE(in1, out); 
input in1; 
output out; 
assign out= ~in1; 
endmodule 
 
2. Write Xor module in a separate file, name it (Xor1.v)  
 
module Xor1(in1, in2, out); 
input in1, in2; 
output out; 
wire w1,w2,w3,w4; 
 
INVGATE inv1(in1,w1);             // w1 = ~in1 
INVGATE inv2(in2,w2);             // w2 = ~in2 
 
ANDGATE AND1(in1, w2, w3);       // w3 = in1&(~in2) 
ANDGATE AND2(in2, w1, w4);     // w4 = in2&(~in1) 
 
ORGATE or1(w3,w4,out);           // out = w3 | w4 
 
endmodule 
 
Note that the Xor1 module should be the top level module, you can change top level module by choosing 
project>set as top level. 
 
If you need the file (lib.v) in another project you don’t have to create it again, just make add file in 
project creation (step3) in Experiment 2. 

Page 5 of 5  



 

 

 

 

 

 

University of Jordan 

Faculty of Engineering and Technology 

Department of Computer Engineering 

Digital Logic Laboratory 0907234 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Name: 

 

Student ID: 

 

Section: 

 

 

 

 

 

 

 

 

 

 

 

 

Labsheet 2: Introduction to Verilog Programming using Quartus II software 



 

Part1: (In Lab) 

 
You are required to use Verilog structural modeling to design function 𝐹 given by the following equation:  

𝐹(𝑥, 𝑦, 𝑧) = (𝑥. 𝑦. 𝑧) + (𝑥⨁𝑧)  

Follow the instructions below: 

1. Open Quartus II software and create a new project. 
  

2. Create and add a Verilog file named “lib.v” to your project. 
 

3. In the file “lib.v”, write modules for 2-input AND gate, 2-input OR gate, and 2-input XOR gate using 
behavioral modeling.  
 

4. Create and add a Verilog file named “circuit1.v” to your project.  
 

5. In the file “circuit1.v”, write a module named “circuit1” that implements function 𝐹 using structural 
modeling.  
 

6. Set the top-level entity to be “circuit1.v” (Assignment → settings → general) or (from Files tab in 
project navigator right click on “circuit1.v” file → set as top level entity).  
 

7. Compile your project and run functional simulation that shows all possible input combinations. 
 

8. Perform the following pin assignments then download and test your design on the FPGA: 

 x: SW [3] → (Pin_AC27)  
 y: SW [2] → (Pin_AB25)  
 z: SW [1] → (Pin_AB26)  
 F: LEDR [0] → (Pin_AJ6) 

 
Copy your “lib.v” code here: 

 

 

 

 

 

 

 

 

 



 

Copy your “circuit1.v” code here: 

 

 

 

 

 

 

 

 

 

 

 

Paste a snap-shot of your entire simulation here: 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

          University of Jordan 

     Faculty of Engineering and Technology 

      Department of Computer Engineering 

          Digital Logic Laboratory 0907234 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Name: 

 

Student ID: 

 

Section: 

 

 

 

 

 

Labsheet 3: Basic Logic Gates Implementation Using Breadboards and Discrete Gates 



Part 1: Check Elementary Functions: 

1- Insert the Quad 2-input AND gate IC into the bread-boarding socket, connect pin 14 to 
+5V and pin 7 to GND. Experimentally verify that this AND gate is working properly by 

determining its truth table.              (In Lab)  
 

 

 

 

 

 

 
 
 
 

2- Can a NOR gate be used as an inverter? How?          
 

 

 

 

 

3- Can a NAND gate be used as a buffer? How?     
 

 

 

 

 

 

 

 

 

Input Output 

i1 i2 F 

0 0  

0 1  

1 0  

1 1  



Part 2: Simple Design: 

1- Build function F circuit on your breadboard and construct the  truth table based on the 

logic outputs for every possible input:            (In lab) 

              ).()( YXXYF   

 

 

 

 

 

 

 

2- Which gate function does F represent? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Input Output 

X Y F 

0 0  

0 1  

1 0  

1 1  



Use the following table when needed. 
 

Gate 
 

IC Code 
 

Pin Configuration 

Hex-Inverter 74LS04 

 
Quad 2-input AND gate 74LS08 

 
Quad 2-input NAND gate 74LS00 

 
Quad 2-input NOR gate 74LS02 

 
Quad 2-input OR gate 74LS32 

 
 



Experiment 2 
Basic Logic Gates Implementation Using Breadboards and Discrete Gates 

  
Introduction:Introduction:  
Logic functions can be implemented in several ways. In the past, vacuum tube and relay circuits 
performed logic functions. Presently logic functions are performed by tiny integrated circuits (ICs). 
These ICs are small silicon semiconductors sheets called chips, containing the electronic 
components for the logic gates. The chip is mounted in a plastic container, and connections are 
welded to external pins may range from 14 in a small IC package to 64 or more in a large one. 
 
Objectives:Objectives:  
• Understand how to use the breadboard to patch up, test your logic design and debug it. 
• Wire and operate logic gates such as AND, OR, NOT, NAND, NOR, XOR. 
• Understand how to implement simple circuits based on a schematic diagram using logic gates. 
  
Theoretical  Background:Theoretical Background:  
 
Types  of  integrated  circuits  (ICs)Types of integrated circuits (ICs)  
The different sizes of integration of IC chips are usually defined in terms of the number of logic 
gates in a single IC or package. They are classified in one of the following categories: 

1. Small-scale integration (SSI) device: contains less than 10 gates in a single package, such as 
logic gates. 

2. Medium scale integration (MSI) device: contains 10 -100 gates in a single package, such as 
adders and decoders. 

3. Large-scale integration (LSI) device: contains 100 to 10000 gates in a single package, such 
as processors. 

4. Very large-scale integration (VLSI) device: contains more than 10000 gates in a single 
package, such as complex microprocessors chips. 

 
Logic  FamiliesLogic Families  
The types of logic devices are classified in "families", of which the most important are TTL and 
CMOS. The main families are:  

• TTL (Transistor-Transistor Logic) made of bipolar transistors.  
• CMOS (Complementary Metal Oxide Semiconductor) made from MOSFETs  
• ECL (Emitter Coupled Logic) for extremely high speeds  
• NMOS, PMOS for VLSI large scale integrated circuits.  

Subfamilies  of  TTL  FamilySubfamilies of TTL Family  
There are subfamilies or series of the TTL. Commercial TTL ICs has a number designation that 
starts with 74 and follows with a suffix that identifies the series type. These subfamilies are: 
Standard: 74xx, High speed 74hxx, low power 74Lxx, Shottky TTL 74Sxx, Low power shottky 
74LSxx, Advanced shottky 74ASxx, Advanced low-power shottky 74ALSxx. 
All TTL IC’s are designed to operate from 5V power supply. The input and output logic levels are 
illustrated in the Figure 1. 

 
 

                                                                                          Figure 1 

CPE 0907234 Digital logic lab 
Prepared by: Eng. Ala`a Arabiyat  

                          Eng.Shatha awawdeh            
Page 1 of 4 

 

                   
 

133



Some  characteristics  of  the  TTL  familySome characteristics of the TTL family  
  

1. Power dissipation: It is the amount of power needed by the gate delivered from the power 
supply. It is equal to 20 mw per gate. Power dissipation is useful to estimate the total power 
consumption of a system, as an example it will help in portable equipment to know what 
type of battery might be needed. 

2. Fan-in: it is the number of inputs that the gate is designed to have, the maximum inputs is 8 
inputs per gate. 

3. Fan-out: it is the maximum number of inputs that can be connected to the output of the gate 
without affecting its normal operation. It is 12 gates. 

4. Propagation/time delay: it is the amount of delay between applying the input and the 
response of the output of the gate. Generally, the propagation delay is in the range of 0.5 to 
50 nanoseconds. The total propagation delay time of a logic system will be the delay gate 
multiplied by the number of gates in series. It is 10 ns per gate. 

 
Practical  TTL  Logic  GatesPractical TTL Logic Gates  
A popular type of IC is illustrated in Figure 2. IC manufacturers refer to this case style as a dual-in-
line package (DIP).This particular IC is called a 14-pin DIP IC. Just counterclockwise from the 
notch on the IC is pin 1. A dot (optional) on the top of the IC is another method used to locate pin 1. 
 

 
Figure 2 

Part Number: 
Part number is divided into three sections: 

• The prefix: the manufacturer's code. 
• Core part number: This determines the technology "TTL or CMOS", the device series and 

the function of a digital IC. 
• The trailing letter(s) "the suffix" which is a code used by several manufacturers to design the 

DIP. 
 
For example, the part number of: 
SN74LS08J 
SN: stands for the manufacturer "Texas Instruments" 
74: 7400 TTL series 
LS: low shottky type 
08: function of a digital IC 
J: Ceramic dual-in-line Package 
 

CPE 0907234 Digital logic lab 
Prepared by: Eng. Ala`a Arabiyat  

                          Eng.Shatha awawdeh            
Page 2 of 4 

 

Waleed Dweik

Waleed Dweik



BreadboardBreadboard  
 

A breadboard is used to build and test circuits quickly before finalizing any circuit design. The 
breadboard has series of holes into which ICs can be inserted. 
• Breadboard Construction: 

¾ The breadboard has a series of holes, each containing an electrical contact.  
¾ Holes in the same row (examples highlighted in yellow (1) in Figure3) are electrically 

connected(they are the same node),holes in other row (highlighted in green (2)) are 
different node, when you insert  a wire into one  hole  then all the holes in the same node  
are  electrically connected.  

¾ The gap (highlighted in pink (3)) marks a boundary between the electrical connections. 
A wire inserted in one of the green holes would not be connected to a wire inserted in 
one of the yellow holes.  

¾ The two top rows of holes at the top highlighted in red and blue are used for power 
supply connections. The first row (highlighted in blue (4)) is connected to ground, all the 
holes in this row are electrically connected. 

¾ The second row (highlighted in red (5) )  must connected to 5V , there are 40  holes  in 
this row, each 10 holes are grouped together  and electrically connected.  

• Using a Breadboard 
1.  Before building a circuit, connect 5V from the power supply to V1 (or V2 or V3) in the 

bread board and 0V the ground of the bread board as shown in the figure below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CPE 0907234 Digital logic lab 
Prepared by: Eng. Ala`a Arabiyat  

                          Eng.Shatha awawdeh            
Page 3 of 4 

 
Figure 3 

Waleed Dweik

Waleed Dweik



1. Use wires to connect V1 in the bread board to the red terminal(+), and ground of the 
bread board to the blue terminal(-).  

2. Place the IC in the board so that pin 1 should be on the upper left of the board. Half of 
the legs should be on one side of the pink gap and half on the other. 

33..  Connect pin 14 of the IC chip to Vcc and pin 7 to ground.  
44..  Connect pin 1 and 2 of the IC chip to the input (you can take the input from the two top 

rows that are connected to the power supply, holes in the first row for logic 0 and holes 
in the second row for logic 1.  

  
  
  
  
  
  
  
  
  
  
  
  
  
  

Figure 4 
5. You can determine the output using the logic probe, logic probe as shown in  ((FFiigguurree55))  

iiss  a hand-held pen-like probe used for analyzing and troubleshooting the logical states 
(Boolean 0 or 1) of a digital circuit. It can be used on either TTL  or CMOS  integrated 
circuit devices. 

a. Attach red alligator clip to positive side of the power supply. 
b. Attach black alligator clip to a negative side of the power supply. 
c. Place the tip of the probe on the point you want to test. Make sure that the switch 

is in TTL position.  
 
 
 
 
  
  

Figure 5 
Wiring  Guidelines:Wiring Guidelines:  
• Arrange the IC chips on the breadboard so that only short wire connections are needed.  
• Try to keep the wire as short as possible to avoid a jungle of wires. 
• Try to maintain a low wiring profile so that the pins of the chips can be reached and the chip 

replaced, if necessary. The best connections are those that lie flat on the board.   
 
Pay extra attention to power and ground. If you find your chips are getting super hot then 
there is probably a short circuit. Turn off power immediately and wire them correctly.  

CPE 0907234 Digital logic lab 
Prepared by: Eng. Ala`a Arabiyat  

                          Eng.Shatha awawdeh            
Page 4 of 4 

 

http://en.wikipedia.org/wiki/Boolean
http://en.wikipedia.org/wiki/TTL
http://en.wikipedia.org/wiki/CMOS


CPE 0907234 Digital logic lab  
Prepared by: Eng. Shatha Awawdeh, Eng. Eman Abu_Zaitoun, Eng. Alaa Arabiyat 

Page 1 of 6 

 

Experiment 5 
Decoder/Encoder Implementation 

 

IInnttrroodduuccttiioonn::    
Data communications between digital systems or computers are usually transmitted in some 
form of a code. A circuit that will convert a digital input into some form of a binary code is 
called an Encoder. A digital circuit that converts a binary code into a recognizable number or 
character is called a Decoder.  
 

OObbjjeeccttiivveess::  
 Design, build, and test a variety of Decoders, Encoders. 
 Demonstrate the operations and applications of Decoders, Encoders. 
 Implement logic functions using Decoders. 
 

DDeeccooddeerr::  
A Decoder is a combinational circuit that converts binary information from n input lines to a 
maximum of 2n unique output lines.  

 A decoder has n inputs and m outputs, where m ≤ 2^n, and is called n-to-m-line 
decoder . 

 each output represent  one of  the minterms of the n input variables for Active-
high decoders, and represent  one of the maxterms for  active-low decoders . 

 
The Figure below represents the block diagram and a truth table for a 2-line-to-4-line (or 2 x 
4) decoder that has active-HIGH inputs and outputs. 

 
 
 
 
 
 
 
 
 
 
 
 

                                                 Figure(1) 
Logic Diagram of 2 x 4 decoder with active-HIGH inputs and outputs: 
 

 
Figure(2) 

4



CPE 0907234 Digital logic lab  
Prepared by: Eng. Shatha Awawdeh, Eng. Eman Abu_Zaitoun, Eng. Alaa Arabiyat 

Page 2 of 6 

 

 
Some decoders,have active-LOW outputs. Figure below shows a block diagram 
and a truth table for a 2 x 4 decoder with active-LOW outputs. 
 

 
Figure(3) 

 
Logic Diagram of 2 x 4decoder with active-LOW outputs: 

 
   Figure(4) 
 
 
 Function Implementation using Decoder 

 
As we mention above the outputs of the decoder correspond to minterms for the active 
high decoder. For example,D0 = m0 = A` B `, a combinational logic function that is 
expressed as a sum of minterms, therefore, can be implemented by summing decoder 
outputs. For example, if f(A,B) =Σ(0, 2, 3) then f (A,B)= D0 + D2 + D3 so f can be 
implemented by the circuit shown in Figure below: 

 
 
 
 
 
 
 
   
   
                                    Figure(5)    

 The Enable Input 

Enable is an important input to the decoder chip.  If the decoder enable signal is active 
high, then the decoder is active (enabled) when enable is 1 and not active (disabled) when 
enable = 0.   
 For an active high decoder that is enabled high we have the following: 



CPE 0907234 Digital logic lab  
Prepared by: Eng. Shatha Awawdeh, Eng. Eman Abu_Zaitoun, Eng. Alaa Arabiyat 

Page 3 of 6 

 

 Enable = 0 All outputs of the decoder are 0 
 Enable = 1 The selected output of the decoder is 1, all other outputs are 0. 
 
 
 
  
 
 
 
 
  
                 
                     Figure(6) 
 

If the decoder enable signal is active low, then the decoder is active (enabled) when 
enable is 0 and not active (disabled) when enable = 1.   
 
 
 Decoder Expansion 
It is possible to combine two or more decoders with enable inputs to form a larger  
decoder . 
The enable inputs are a convenient feature for decoder expansion . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                       
 
 
 
 
 
 
 
                                                             Figure(7) 
 
 
 
 
 
 
 
 



CPE 0907234 Digital logic lab  
Prepared by: Eng. Shatha Awawdeh, Eng. Eman Abu_Zaitoun, Eng. Alaa Arabiyat 

Page 4 of 6 

 

 

EEnnccooddeerr:: 
An encoder is a digital circuit that performs the inverse of a decoder, the  encoder has 2

n 
(or 

less) input lines and n output lines ,the output lines generate the binary code 
corresponding to the input value . 

Example : design 8-3 encoder. 
 

 
                Figure(8) 

 

If we look carefully at the Encoder circuits that we got, we see that if more then two inputs 
are active simultaneously, the output is unpredictable or it is not what we expect it to be. This 
ambiguity is resolved if priority is established so that only one input is encoded, no matter 
how many inputs are active at a given point of time. 

• Priority Encoder : 
With a priority encoder, we may have more than one input with a value of 1. How do we 
can decide which input subscript to encode by assign a priority to each of the subscripts.  
 
There are two common ways to do come up with a priority scheme: 

 Larger subscripts have higher priorities. Thus, 0 has the lowest priority, and 7 has the 
highest.  

 Smaller subscripts have higher priorities. Thus, 7 has the lowest priority, and 0 has 
the highest.  

For now, let's assume that larger subscripts have higher priorities,then the following table 
represent 8-3 high priority encoder: 



CPE 0907234 Digital logic lab  
Prepared by: Eng. Shatha Awawdeh, Eng. Eman Abu_Zaitoun, Eng. Alaa Arabiyat 

Page 5 of 6 

 

 
.  

  
  
SSoo::  
Y0 = I7 + I5 I6` + I3 I4` I6` + I1 I2` I4` I6` 
 
Y1 = I7 + I6 + I3 I4` I5` + I2 I4` I5` 
 
Y2 = I7 + I6 + I5 + I4  
  

 The All-Zero Case  

What do we do if all the inputs are 0? We might encode 000 as output, but that creates a 
problem. In particular, we can't distinguish between all 0's as inputs and  having I0 =1. 
One way to solve this problem is to create a status bit(valid bit (V)). This bit is an output. 
We could say that this bit is 1 if the input is valid, and 0 if not. Thus, this bit is only 0 
when all inputs are 0.  
So I can write the equation of  V as: V=I0+I1+I2+I3+I4+I5+I6+I7 
Other hardware devices could look at the status bit to determine whether a proper 
encoding was performed.   

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  



CPE 0907234 Digital logic lab  
Prepared by: Eng. Shatha Awawdeh, Eng. Eman Abu_Zaitoun, Eng. Alaa Arabiyat 

Page 6 of 6 

 

  SSeeggmmeenntt  DDiissppllaayy: 

The 7-segment display consist in small bars (the segments) that, set in the way indicated in 
Figure below, with standard letters a through g; enable the representation of the ten decimal 
numbers (0-9) and some other characters.  
 
 
 
 
 
 
 
                                                              Figure(9) 
 
Electrically the LEDs behave like standard diodes at solid state, with the only difference that 
there is a higher voltage between anode and cathode, in case of direct polarization. 
There are two main types of 7-segment displays (As shown in Figure below): 
   1-with common cathode, driven with positive logic. 
   2-with common anode, driven with negative logic. 
 
 
 
 
 
 
 
                               
 
 
 
  
                                                              Figure(10) 
The 7-segment display device requires seven separate inputs. To use this display device, the 
binary code called Binary Coded Decimal (BCD) is converted to 7-segment code and 
supplied to the input of the display device. The circuit that performs the conversion is called a 
BCD to 7-segment decoder/driver (As shown in Figure below).The LT input used to test 
that all segments working. 
 

 
 
 
 
 
 

  
  
  
                                                             Figure(11) 

  
  
  
 



 

 

 

 

 

 

University of Jordan 

Faculty of Engineering and Technology 

Department of Computer Engineering 

Digital Logic Laboratory 0907234 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Name: 

 

Student ID: 

 

Section: 

 

 

 

 

 

 

 

 

 

 

 

 

Labsheet4: Decoder and Encoder Simulation  



 

Problem Description:  

You are requested to design a system that monitors 7 digital devices in your home. Each of these devices 
continuously sends a signal to the system to report its status. The device sends logic '0' if it is working 
properly; otherwise, the device sends logic '1' to indicate that it is not working and needs to be fixed. 
The monitoring system uses two seven segment displays to show the status of these devices and the 
number of the faulty device, if any, as shown in Figure 1. 

 

Figure 1: Monitoring System Block Diagram 

The system operates as follows: 

1. The signals received from the devices are connected to an 8-to-3 high priority encoder that 
outputs the number of the faulty device with the highest priority in binary format. For example, 
the encoder outputs '110' when Device 6 is the only faulty one. In case there is more than one 
faulty device, the encoder outputs the highest faulty device number. For instance, if devices 5 
and 2 are faulty, the encoder outputs '101'. In case none of the devices is faulty, the encoder 
outputs '000'.  
 

2. The output of the encoder is connected to a 7-segment driver/decoder labeled "Device #" that 
converts the device number into the corresponding 7-segment code. The output of this driver is 
connected to the 7-segment display labeled "Device#" to show the faulty device number, if any. 
The "Device#" 7-segment display is turned off when none of the devices is faulty. 
 

3. The output of the encoder is also connected to another 7-segment driver/decoder labeled 
"Status" which in turn is connected to a 7-segment display labeled "Status" which displays the 
overall status of the system. When there are no faulty devices, the "Status" 7-segment displays 
the letter "H" (i.e. the system is healthy). On the other hand, the letter "P" is displayed to indicate 
there is a problem in the system when there is at least one faulty device.  

In order to implement the system, it is required first to implement the encoder and the 7-segment 
drivers/decoders in Verilog behaviorally. Second, the three components are combined structurally 
in the top-level module. 



Part1: 8-to-3 High Priority Encoder: 

a) Fill the 8-to-3 high priority encoder truth table:       (Pre-Lab) 
 

Inputs Outputs Output value in 
decimal (A2 is 

MSB) 
D7 D6 D5 D4 D3 D2 D1 D0 A2 A1 A0 

            

            

            

            

            

            

            

            

 
b) Write the Boolean equations of outputs A2, A1 and A0:      (Pre-Lab)  

 

A2 =  

A1 =  

A0 =  

 
c) Write the Verilog behavioral implementation of the 8-to-3 high priority encoder in the 

"encoder.v" file. This module should have eight inputs (i.e. D7-D0) and three outputs (A2-A0): 

Paste your “encoder.v” code here: 

 

 

 

 

 

 

 

 

 

d) Set "encoder.v" as top-level entity and perform functional simulation of the 8-to-3 high priority 
encoder. The simulation report should show the eight input combinations given in the above 
truth table and the outputs should be combined together with A2 as the MSB and format is 
decimal. 



Paste a snapshot of your “encoder.v” simulation report here: 

 
 
 
 
 
 
 

 

 

 

 

 

Part2: "Device #" 7-segment Driver/Decoder: 

a) Read the 7-segment display appendix at the end of the labsheet.  
b) Fill the truth table for the "Device #" 7-segment driver/decoder given in Figure 1 assuming 

common-anode 7-segment display: 
 

Inputs Outputs Output value in 
hexadecimal (a 

is MSB) 
A B C a b c d e f g 

0 0 0         

0 0 1         

0 1 0         

0 1 1         

1 0 0         

1 0 1         

1 1 0         

1 1 1         

c) Write the Boolean equations of outputs a, b, c, d, e, f, and g:  
 

a =  

b =  

c =  

d =  

e =  

f =  

g = 



d) Write the Verilog behavioral implementation of the "Device#" 7-segment driver/decoder in 
the "segdriver_device.v" file. This module should have three inputs (i.e. A, B and C; where A is 
the MSB) and seven outputs (i.e. a, b, c, d, e, f, and g).  

Paste your “segdriver_device.v” code here: 

 
 
 
 
 
 
 

 

 

 

 

 

 

e) Set "segdriver_device.v" as top-level entity and perform functional simulation of the "Device#" 
7-segment driver/decoder. The simulation report should include all input combinations and 
the outputs should be combined together with "a" as the MSB and format is hexadecimal. 

Paste a snapshot of your “segdriver_device.v” simulation report here: 

 
 
 
 
 
 
 

 

 

 

 

 

 



Part3: "Status #" 7-segment Driver/Decoder: 

a) Fill the truth table for the "Status" 7-segment driver/decoder given in Figure 1 assuming 
common-anode 7-segment display: 
 

Inputs Outputs Output value in 
hexadecimal (a 

is MSB) 
A B C a b c d e f g 

0 0 0         

0 0 1         

0 1 0         

0 1 1         

1 0 0         

1 0 1         

1 1 0         

1 1 1         

b) Write the Boolean equations of outputs a, b, c, d, e, f, and g:  
 

a =  

b =  

c =  

d =  

e =  

f =  

g = 

c) Write the Verilog behavioral implementation of the "Status" 7-segment driver/decoder in the 
"segdriver_status.v" file. This module should have three inputs (i.e. A, B and C; where A is the 
MSB) and seven outputs (i.e. a, b, c, d, e, f, and g).  

Paste your “segdriver_status.v” code here: 

 
 
 
 

 

 

 

 

 



d) Set "segdriver_status.v" as top-level entity and perform functional simulation of the "Status" 
7-segment driver/decoder. The simulation report should include all input combinations and 
the outputs should be combined together with "a" as the MSB and format is hexadecimal. 

Paste a snapshot of your “segdriver_status.v” simulation report here: 

 
 
 
 
 
 
 

 

 

 

 

 

 

Part4: Monitoring System: 

a) Write the Verilog structural implementation of the overall system shown in Figure 1 in the 
"circuit1.v" file. This module should have eight inputs (i.e. D7-D0) and 14 outputs (i.e. "a, b, c, d, 
e, f, and g" for the "Device#" 7- segment driver and "a1, b1, c1, d1, e1, f1, and g1" for the "Status" 
7-segment driver). 
 

Paste your “circuit1.v” code here: 

 

 

 

 

 

 

 

 

 



b) Set "circuit1.v" as top-level entity and perform functional simulation of the full system. The 
simulation report should contain the same eight input combinations in the truth table of the 8-
to-3 high priority encoder. The outputs "a, b, c, d, e, f, and g" should be combined together with 
"a" as the MSB and format is hexadecimal. Similarly, the outputs "a1, b1, c1, d1, e1, f1, and g1" 
should be combined together with "a1" as the MSB and format is hexadecimal. 

Paste a snapshot of your “circuit1.v” simulation report here: 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

c) Set the following pin assignment to the inputs and outputs in the "circuit1.v" file, download your 
design on the FPGA, and fill the following table: 

 
SW[6] SW[5] SW[4] SW[3] SW[2] SW[1] SW[0] oHEX0 oHEX1 

0 0 0 0 0 0 0   

0 0 0 1 0 0 0   

0 0 0 0 1 1 1   

Input Switches 
D1 iSW[0] PIN_AA23 
D2 iSW[1] PIN_AB26 
D3 iSW[2] PIN_AB25 
D4 iSW[3] PIN_AC27 
D5 iSW[4] PIN_AC26 
D6 iSW[5] PIN_AC24 
D7 iSW[6] PIN_AC23 

Device# 7-seg Display 
a oHEX0_D[0] PIN_AE8 
b oHEX0_D[1] PIN_AF9 
c oHEX0_D[2] PIN_AH9 
d oHEX0_D[3] PIN_AD10 
e oHEX0_D[4] PIN_AF10 
f oHEX0_D[5] PIN_AD11 
g oHEX0_D[6] PIN_AD12 

Status 7-seg Display 
a1 oHEX1_D[0] PIN_AG13  
b1 oHEX1_D[1] PIN_AE16  
c1 oHEX1_D[2] PIN_AF16  
d1 oHEX1_D[3] PIN_AG16  
e1 oHEX1_D[4] PIN_AE17  
f1 oHEX1_D[5] PIN_AF17  
g1 oHEX1_D[6] PIN_AD17  



 

 

Appendix: 7-Segment Display  

The 7-segment display consists of seven LEDs arranged as shown in Figure 2. The LEDs are indicated 
by the letters a, b, c, d, e, f, and g. Each LED behaves like a diode with the following two connection types: 

 

Figure 2: 7-segment Display 

1. Common cathode: LEDs illuminate when positive logic is applied 
2. Common anode: LEDs illuminate when negative logic is applied  

By controlling the illumination of the seven LEDs, the 7-segment can display all decimal digits as 
follows:  

 

Figure 3: Displaying Decimal Digits on 7-segment Display 

Paste a snapshot of your Pin Assignment Editor window: 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 



The 7-segment display requires a special decoder device called the 7-segment driver. As shown in the 
figure below, the input of the 7-segment driver is a 4-bit binary number that specifies which 
decimal/hexadecimal digit to display. The 7-segment driver produces seven 1-bit outputs that control 
the illumination of the seven LEDs in the 7- segment display.  

 

Figure 4: Connecting 7-segment Driver to 7-segment Display 

 

 
 
 
 

 



CPE 0907234 Digital logic lab 
 Prepared by: Eng. Shatha Awawdeh, Eng. Eman Abu_Zaitoun 
                                                                                                                                                                                                               Page 1 of 4 

 

Experiment 6 
Multiplexers  Design and Implementation 

 

IInnttrroodduuccttiioonn::    
A multiplexer (or data selector) is a device that is capable of taking two or more data lines 
and converting them into a single data line for transmission to another point. 
A multiplexer (MUX) performs the function of selecting the input on any one of 'n' input 
lines and feeding this input to one output line. Multiplexers are used as one method of 
reducing the number of integrated circuit packages required by a particular circuit design. 
This in turn reduces the cost of the system.  
 

OObbjjeeccttiivveess::  
 Design, build, and test Multiplexers. 
 Demonstrate the operations and applications of Multiplexers. 
 Implement logic functions using Multiplexers. 
 Use Tri-State Buffers to implement a Multiplexer. 
 

  
MMuullttiipplleexxeerr  

• A multiplexer is a combinational circuit that selects binary information from one of 
many input lines and directs it to a single output lines. 

• The selection of particular input line is controlled by a set of selection lines. 
• Normally, there are (2)n input line and n selection lines whose combinations 

determine which input is selected. 
• A 2-to-1 line multiplexer connects one of two 1-bit sources to a common destination 

as shown in figure  below. 
 

            
                                        Figure(1) 
 
 
 
 
 
 

5



CPE 0907234 Digital logic lab 
 Prepared by: Eng. Shatha Awawdeh, Eng. Eman Abu_Zaitoun 
                                                                                                                                                                                                               Page 2 of 4 

 

 
Truth Table of 2-1 mux: 
 

 
 
 
 

 
• The circuit has two data input lines, and one selection line S. 
• When S=0, the upper AND gate is enabled and the I0 has a path to  the output 
• When S=1, the lower AND gate is enabled and I1 has path to the output. 
• The multiplexer acts like an electric switch that selects one of two sources.  

 
 A 4-to-1 line multiplexer is shown below 

 

 
                                Figure(2) 
 

• Each of the four inputs, I0 through I3, is applied to one input of an AND gate. 
• Selection lines S1 and S0  are decoded to select a particular AND gate 
• The output of AND gates are applied to a single OR gate that provides the 1-line 

output.  
 

  
DeMultiplexers: 

 
 A Demultiplexer is a Combinational logic circuit that receives binary information from a 
single input and directs this information to one of many outputs. The selection is done by a 
binary value present at the select inputs. (As shown in fig 3) 
 

 
Input Output 
I En S O0 O1 
X 0 X X X 
0 1 0 0 X 
1 1 0 1 X 
0 1 1 X 0 
1 1 1 X 1 

 

  

input Output 

S I0 I1 

0 0 X 0 

0 1 X 1 

1 X 0 0 

1 X 1 1 



CPE 0907234 Digital logic lab 
 Prepared by: Eng. Shatha Awawdeh, Eng. Eman Abu_Zaitoun 
                                                                                                                                                                                                               Page 3 of 4 

 

  
  
  
  
  
                                                                  Figure(4):Demultiplixer  
TTrrii--ssttaattee  bbuuffffeerr  
A tri-state buffer is a digital device that is capable of three different outputs, high, low and 
disconnected (high impedenace). 
Here's two diagrams of the tri-state buffer.  

 

         Figure(4)  

A tri-state buffer has two inputs: a data input x and a control input c. The control input acts 
like a valve. When the control input is active, the output is the input. That is, it behaves just 
like a normal buffer. When the control input is not active no electrical current flows 
through,so the tri state buffer is in high impedance state (Z) ,Thus, even if x is 0 or 1, that 
value does not flow through.  

Here's a truth table describing the behavior of a active-high tri-state buffer.  

c  x  Out  

0  0  Z  

0  1  Z  

1  0  0  

1  1  1  

Active-low tri-state buffers  
Some tri-state buffers are active low. In an active-low tri-state buffer, c = 0 turns open the 
valve, while c = 1 turns it off. Here's the condensed truth table for an active-low tri-state 
buffer.  

c  Out  

0  x  

1  Z  

 

c  Out  

0  Z  

1  x  



CPE 0907234 Digital logic lab 
 Prepared by: Eng. Shatha Awawdeh, Eng. Eman Abu_Zaitoun 
                                                                                                                                                                                                               Page 4 of 4 

 

Implementing 2-to-1 Multiplexe using Tristate buffer: 
Given below is the circuit diagram of a 2 to 1 MUX implemented by a tristate buffer. 

  

  
  
  
  
  
  
  
  
  
  
  
  
  
  



 

 

 

 

 

 

University of Jordan 

Faculty of Engineering and Technology 

Department of Computer Engineering 

Digital Logic Laboratory 0907234 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Name: 

 

Student ID: 

 

Section: 

 

 

 

 

 

 

 

 

 

 

 

 

Labsheet5: Multiplexer and Demultiplexer Simulation 



 

Problem Description:  

In this experiment, you will design the two-bit time-division multiplexing (TDM) communication circuit 
shown in Figure 1. On the sender side, a 2-to-1 dual multiplexer is used to determine which transmitter 
(Tx0 or Tx1) is allowed to send data. On the receiver side, a 1-to-2 dual demultiplexer is used to 
determine which port (X or Y) is used to receive data. Two 7- segment displays are connected to the 
receivers to display the value received (in decimal) if the receiver is selected. If the receiver is not 
selected, the (-) sign should be displayed on its 7-segment display. Notice that port X is connected to 
receiver0 7-segment display and port Y is connected to receiver1 7-segment display.  

 

Figure 1: 2-bit TDM Communication Circuit 

The experiment is divided into four parts: 2-to-1 dual multiplexer implementation, 1-to-2 dual 
demultiplexer implementation, 7-segment driver implementation, and top-level entity.  

Part1: 2-to-1 Dual MUX 

a) Fill-in the truth table for the 2-to-1 MUX shown in Figure 2.   (Pre-Lab) 

 

Figure 2: 2-to-1 MUX 

 

 
b) Write the Boolean equation of output “out”:      (Pre-Lab)  

 

out =  

Inputs Outputs 
S I1 I0 out 

    

    

    

    

    

    

    

    



c) Implement the 2-to-1 MUX using structural Verilog code in a module named “mux1” inside the 
“mux1.v” file. This module has three inputs (i.e. S, I1, and I0) and one output (i.e. out). Use the 
gates given in the given “lib.v” file. 
  

Paste your “mux1.v” code here: 

 

 

 

 

 

 

 
d) Implement the 2-to-1 Dual MUX using structural Verilog code in a module named “dualmux” 

inside the “dualmux.v” file by instantiating two instances of module “mux1” connected as shown 
in Figure 3. This module has five inputs (A1, A0, B1, B0, and S) and two outputs (out1, out0). 
 

 
Figure 3: 2-to-1 Dual MUX 

Paste your “dualmux.v” code here: 

 
 
 
 
 
 
 

 

 

 



Part2: 1-to-2 Dual DMUX  

a) Fill-in the truth table for the 1-to-2 DMUX shown in Figure 4.   (Pre-Lab) 

 

Figure 4: 1-to-2 DMUX 

b) Write the Boolean equations of outputs X and Y:      (Pre-Lab)  
 

X =  

Y =  

 
c) Implement the 1-to-2 DMUX using structural Verilog code in a module named “dmux1” inside 

the “dmux1.v” file. This module has two inputs (i.e. S and D) and two outputs (i.e. X and Y). Use 
the gates given in the “lib.v” file. 
  

Paste your “dmux1.v” code here: 

 

 

 

 

 
d) Implement the 1-to-2 Dual DMUX using structural Verilog code in a module named “dualdmux” 

inside the “dualdmux.v” file by instantiating two instances of module “dmux1” connected as 
shown in Figure 5. This module has three inputs (In1, In0, and S) and four outputs (Y1, Y0, X1, 
and X0). 
 

 
Figure 5: 1-to-2 Dual DMUX 

Inputs Outputs 
S D X Y 

    

    

    

    



Paste your “dualdmux.v” code here: 

 
 
 
 
 
 
 

 

 

Part3: 7-segment Driver/Decoder 

The 7-segment driver in the TDM circuit has three inputs: A, B, and C. Input “A” represents a control 
signal which identifies whether the receiver represented by the corresponding display is selected to 
receive data or not.  

 If A=0, then regardless of the values of B and C, a dash symbol (-) should be displayed to indicate 
that this receiver is not receiving data. (Dash symbol can be generated by making segment "g" 
ON and turning off all the remaining segments) 

 If A=1, then the decimal value corresponding to the received bits (B and C) should be displayed.  
 

a) According to the above specification, fill-in the truth table for the 7-segment driver assuming 
common-anode 7-segment display: 
 

Inputs Outputs Output value in 
hexadecimal (a 

is MSB) 
A B C a b c d e f g 

0 0 0         

0 0 1         

0 1 0         

0 1 1         

1 0 0         

1 0 1         

1 1 0         

1 1 1         

b) Write the Boolean equations of outputs a, b, c, d, e, f, and g:  
 

a =  

b =  

c =  

d =  

e =  

f =  

g = 



c) Implement the 7-segment driver using behavioral Verilog code in a module named “segdriver” 
inside the “segdriver.v” file. This module has three inputs (i.e. A, B and C; where A is the MSB) 
and seven outputs (i.e. a, b, c, d, e, f, and g).  

Paste your “segdriver.v” code here: 

 
 
 
 

 

 

 

 

 

Part4: TDM Communication Circuit 

a) Implement the TDM circuit shown in Figure 1 using structural Verilog code in a module named 
“circuit1” inside the “circuit1.v” file. This module has six inputs (i.e. Tx01, Tx00, Tx11, Tx10, SS, 
and RS) and 14 outputs (i.e. “a, b, c, d, e, f, and g” for “receiver0” 7-segment display and “a1, b1, 
c1, d1, e1, f1, and g1” for “receiver1” 7-segment display). 
 

Paste your “circuit1.v” code here: 

 

 

 

 

 

 

 

 
 
 
 
 
 



b) Set “circuit1.v” as top-level entity and assign the following pins to the inputs and outputs in the 
"circuit1.v" file, download your design on the FPGA, and test it: 

 

 
c) Perform functional simulation using the combinations given the table below. The inputs “TX11 

and TX10” should be combined together with “TX11” as the MSB and format is unsigned 
decimal. The inputs “TX01 and TX00” should be combined together with “TX01” as the MSB 
and format is unsigned decimal. The outputs “a, b, c, d, e, f, and g” should be combined 
together with “a” as the MSB and format is hexadecimal. Similarly, the outputs “a1, b1, c1, 
d1, e1, f1, and g1” should be combined together with “a1” as the MSB and format is 
hexadecimal. 

Inputs Outputs 

SS RS TX11 TX10 TX01 TX00 
a-to-g in 

hexadecimal 
a1-to-g1 in 

hexadecimal 
0 0 1 0 0 0   
0 0 1 1 0 1   
0 1 0 1 1 0   
0 1 0 0 1 1   
1 0 1 0 0 0   
1 0 1 1 0 1   
1 1 0 1 1 0   
1 1 0 0 1 1   

 
Paste a snapshot of your “circuit1.v” simulation report here: 

 
 
 
 
 
 
 
 

 

 

 

 

 

Input Switches 
Tx00  iSW[1] PIN_AB26 
Tx01 iSW[2] PIN_AB25 
Tx10 iSW[5] PIN_AC24 
Tx11 iSW[6] PIN_AC23 
SS iSW[8] PIN_AD24 
RS iSW[9] PIN_AE27 

Receiver0 7-seg Display 
a oHEX3_D[0] PIN_P6 
b oHEX3_D[1] PIN_P4 
c oHEX3_D[2] PIN_N10 
d oHEX3_D[3] PIN_N7 
e oHEX3_D[4] PIN_M8 
f oHEX3_D[5] PIN_M7 
g oHEX3_D[6] PIN_M6 

Receiver1 7-seg Display 
a1 oHEX4_D[0] PIN_P1  
b1 oHEX4_D[1] PIN_P2  
c1 oHEX4_D[2] PIN_P3  
d1 oHEX4_D[3] PIN_N2  
e1 oHEX4_D[4] PIN_N3  
f1 oHEX4_D[5] PIN_M1  
g1 oHEX4_D[6] PIN_M2  



CPE 0907234 Digital logic lab 
Page 1 of 5 

 
 

Experiment 7 
Arithmetic Circuits Design and Implementation  
  
IInnttrroodduuccttiioonn::    
Addition is just what you would expect in computers. Digits are added bit by bit from right to 
left, with carries passed to the next digit to the left, just as you would do by hand. Subtraction 
uses addition: the appropriate operand is simply negated before being added. 
 
OObbjjeeccttiivveess::  
x To understand the concept of Half and Full Adders. 
x Design and build Ripple Carry Adder . 
x Introduce 4-bit magnitude comparator. 
x Design and implement binary multiplier 
 
 
HHaallff  AAddddeerr::  
 

Half adder is a combinational circuit that adds only two one bit numbers ,Since there are 
two inputs (x and y), only four possible combinations of inputs can applied . These four 
possibilities, and the resulting sums are shown in following truth table. 

 
 
 
 
  
  
  
  
  
  
                                          Figure(1) 

  
  
  
  
  
  
  
  
  
  
  
  

6

6



CPE 0907234 Digital logic lab 
Page 2 of 5 

 
 

FFuullll  AAddddeerr::  
  
Full adder is a combinational circuit that adds three bits and generates a sum and carry.  

. ad outputs two one-bit binary numbers, 
a sum (S) and a carry (C1).    
From the truth table, we can obtain the Boolean expression of C & S outputs as follows : 
  

  
Using Map-simplification method, we can get the simplified forms as follows : 
  

  
  
Now, we can construct the full-adder circuit based on the simplified Boolean expression of S 
and C outputs 
  

  
                                                  Figure(2)  
  
  
  
  
  



CPE 0907234 Digital logic lab 
Page 3 of 5 

 
 

  
RRiippppllee  AAddddeerr    
  
Two binary numbers, each of n bits, can be added using a ripple adder, a cascade of n full 
adders; each full adder handles one bit. Each Cout of a full adder is connected to the Cin of 
the higher full adder. The Cin of the least significant full adder is set to 0.  

 

AAddddeerr--SSuubbttrraaccttoorr  cciirrccuuiitt    
  
The subtraction of two binary numbers can be done by taking the 2’s complement of the 
subtrahend and adding it to the minued. The 2’s complement can be obtained by taking the 
1’s complement and adding 1. To perform A - B, we complement the four bits of B, add them 
to the four bits of A, and add 1 to the input carry.  
We may use XOR gate as an inverter if placing a logic “1” at one of the inputs. This helps in 
getting the 1’s complement of the subtrahend; then we add “1” to get the 2’s complement; 
which in turn is added to the minued to get the final result of the subtraction.  
Figure below shows adder-subtractor circuit; the mode input M controls the operation; when 
M=0, the circuit is an adder. When M=1, the circuit becomes a subtractor. This circuit can be 
cascaded for any number of inputs.  

  
                                   Figure(3) 
  
  
  
  
  
  
  
  
  
  
  
  
  



CPE 0907234 Digital logic lab 
Page 4 of 5 

 
 

  
MMuullttiipplliieerr::  
  
If we want to multiply tow numbers(A,B) ,each of them is consist of two bit as follows: 
B = {B1 B0}, 
A = {A1 A0} 
Then we multiply by doing single-bit multiplications and shifts.  

  
  
  
  

  
                                                          Figure(4) 
  
  
  
  
  
  
  
  
  
  
  
  



CPE 0907234 Digital logic lab 
Page 5 of 5 

 
 

  
CCoommppaarraattoorr::  

Another common and very useful combinational logic circuit is that of the Digital 
Comparator circuit. Digital or Binary Comparators are made up from standard AND, NOR 
and NOT gates that compare the digital signals at their input terminals and produces an 
output depending upon the condition of the inputs. For example, whether input A is greater 
than, smaller than or equal to input B etc. 

Digital Comparators can compare a variable or unknown number for example A (A1, A2, 
A3, .... An, etc) against that of a constant or known value such as B (B1, B2, B3, .... Bn, etc) 
and produce an output depending upon the result. For example, a comparator of 1-bit, (A and 
B) would produce the following three output conditions. 

 

1-bit Comparator 

 

Then the operation of a 1-bit digital comparator is given in the following Truth Table. 

Truth Table 

Inputs Outputs 
B A A > B A = B A < B 
0 0 0 1 0 
0 1 1 0 0 
1 0 0 0 1 
1 1 0 1 0 

 
 
 



 

 

 

 

 

 

University of Jordan 

Faculty of Engineering and Technology 

Department of Computer Engineering 

Digital Logic Laboratory 0907234 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Name: 

 

Student ID: 

 

Section: 

 

 

 

 

 

 

 

 

 

 

 

 

Labsheet6: Arithmetic and Logic Unit (ALU) Design and Simulation  



 

Problem Description:  

The goal of this experiment is to design a simple 2-bit ALU combinational circuit that performs three 
unsigned operations: addition, subtraction and multiplication. As shown in Figure 1, the ALU circuit 
has two 2-bit unsigned numbers A {A1A0} and B {B1B0} as inputs and a 4-bit unsigned number R 
{R3R2R1R0} as an output. The ALU circuit also has 2-bit control signal m {m1m0} that is used to choose 
the desired ALU operation as shown in Table 1.  

 

Figure 1: ALU Diagram 

 
Table 1: ALU Truth Table 

m1 m0 Arithmetic Operation 
0 0 Addition 
0 1 Subtraction 
1 X Multiplication 

The experiment is divided into four parts: 2-to-1 quad multiplexer implementation, 2-bit ripple-carry 
adder/subtractor implementation, 2-bit multiplier implementation, and top-level entity.  

Part1: 2-to-1 Quad MUX 
 

a) Inside the Mux2to1.v file, write a behavioral Verilog code to implement a 2-to-1 multiplexer 
module. This module has three inputs (I0, I1 and S) and one output (OUT).  (Pre-lab) 

 
b) Inside the QuadMux2to1.v file, write a structural Verilog code to implement the quad 2-to-1 

multiplexer module using four instances of the 2-to-1 multiplexer design in part a. This module 
has nine inputs (A3, A2, A1, A0, B3, B2, B1, B0 and S) and four outputs (O3, O2, O1 and O0). Notice 
that when S = 0, input A {A3A2A1A0} is selected.      (Pre-lab) 



  
Paste your “Mux2to1.v” code here: 

 

 

 

 

 

 
 

Paste your “QuadMux2to1.v” code here: 

 

 

 

 

 

 

 
Part2: 2-bit Ripple-Carry Adder/Subtractor 

a) Fill-in the truth table for the 1-bit Full Adder (FA) shown in Figure 2.   (Pre-Lab) 

 

Figure 2: 1-to-2 DMUX 

 
 
 
 

 
 

Inputs Outputs 
Cin in1 in0 Cout sum 

     

     

     

     

     

     

     

     



b) Write the Boolean equations of outputs sum and Cout:      (Pre-Lab)  
 

sum =  

Cout =  

 
c) Inside the FA.v file, write a behavioral Verilog code to implement the Full Adder module. This 

module has three inputs (in0, in1 and Cin) and two outputs (sum and Cout). 
  

Paste your “FA.v” code here: 

 

 

 

 

 
d) Inside the TwoBitAdderSubtractor.v file, write a structural Verilog code to implement the 2-

bit adder/subtractor module shown in Figure 3 using two cascaded full adders and two XOR 
gates from lib.v.. This module has five inputs (A0, A1, B0, B1, and S) and three outputs (S0, S1, 
and Cout). 

 

Figure 3: 2-bit Adder/Subtractor 

Paste your “TwoBitAdderSubtractor.v” code here: 

 

 

 

 

 

 



Part3: 2-bit Multiplier 

 

Figure 4: 2-bit Multiplier 

 

a) Inside the Mul.v file, write a structural Verilog code to implement the 2-bit multiplier module 
shown in Figure 4 using one instance of the 2-bit adder/subtractor circuit and four instances of 
the 2-input AND gate module from lib.v. This module has four inputs (A0, A1, B0, and B1) and 
four outputs (M0, M1, M2 and M3).  

Paste your “Mul.v” code here: 

 

 

 

 

 

 

 

 

 

 

 

 



Part4: ALU Circuit 

a) Inside the ALU.v file, write a structural Verilog code to implement the full ALU circuit module 
given in Figure 1.  
 

Paste your “ALU.v” code here: 

 

 

 

 

b) Set “ALU.v” as top-level entity and perform functional simulation using the waveform file given 
to you “ALU.vwf” and make sure that your design is functionally correct. 

Paste a snapshot of your “ALU.v” simulation report here: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Part5: ALU Implementation on FPGA 

In order to implement and test the ALU design on the FPGA, four 7-segment displays are needed to show 
the values of operand A, operand B, operation (i.e. addition, subtraction, or multiplication), and result. 
You are provided with two Verilog files that are already completed for you: “segdriver2.v” for operation 
and “segdriver4.v” for operands and result.    

a) Inside the ALU_FPGA.v file, write a structural Verilog code that interfaces the ALU circuit with 
the four 7-segment drivers. 
 

b) Set “ALU_FPGA.v” as top-level entity and assign the following pins to the inputs and outputs in 
the "ALU_FPGA.v" file, download your design on the FPGA, and test it. 

Input Switches 
B0 iSW[1] PIN_AB26 
B1 iSW[2] PIN_AB25 
m0 iSW[3] PIN_AC27 
m1 iSW[4] PIN_AC26 
A0 iSW[5] PIN_AC24 
A1 iSW[6] PIN_AC23 

Result 7-seg Display 

a0 oHEX0_D[0] PIN_AE8 
b0 oHEX0_D[1] PIN_AF9 
c0 oHEX0_D[2] PIN_AH9 
d0 oHEX0_D[3] PIN_AD10 
e0 oHEX0_D[4] PIN_AF10 
f0 oHEX0_D[5] PIN_AD11 
g0 oHEX0_D[6] PIN_AD12 

Operand-B 7-seg Display 

a1 oHEX1_D[0] PIN_AG13 
b1 oHEX1_D[1] PIN_AE16 
c1 oHEX1_D[2] PIN_AF16 
d1 oHEX1_D[3] PIN_AG16 
e1 oHEX1_D[4] PIN_AE17 
f1 oHEX1_D[5] PIN_AF17 
g1 oHEX1_D[6] PIN_AD17 

Operation 7-seg Display 

a2 oHEX2_D[0] PIN_AE7 
b2 oHEX2_D[1] PIN_AF7 
c2 oHEX2_D[2] PIN_AH5 
d2 oHEX2_D[3] PIN_AG4 
e2 oHEX2_D[4] PIN_AB18 
f2 oHEX2_D[5] PIN_AB19 
g2 oHEX2_D[6] PIN_AE19 

Operand-A 7-seg Display 

a3 oHEX3_D[0] PIN_P6 
b3 oHEX3_D[1] PIN_P4 
c3 oHEX3_D[2] PIN_N10 
d3 oHEX3_D[3] PIN_N7 
e3 oHEX3_D[4] PIN_M8 
f3 oHEX3_D[5] PIN_M7 
g3 oHEX3_D[6] PIN_M6 

 



CPE 0907234 Digital logic lab 
Page 1 of 6  

Experiment 8 
Introduction to Latches and Flip-Flops and registers 
  

UIInnttrroodduuccttiioonn::    
The logic circuits that have been used until now were combinational logic circuits since the 
output of the device depends on the input data. Sequential logic circuits are defined as circuits 
whose outputs depend both on the present values of the inputs and the previous state of the 
circuits. Latches and flip-flops are basic sequential circuit whose operation we will 
investigate during this experiment. The difference between these two sequential devices is 
that flip-flop's output changes only at specific times determined by a clocking signal, while 
latch's output changes independent of a clocking signal. 
Sequential circuits form the basis of registers, memories, and state machines, which in turn 
are vital functional units in digital design. 
 
UOObbjjeeccttiivveess::  
• Design, build, and test various sequential logic circuits. 
• An in-depth study of the operation of S-R, J-K, master-slave, and edge-triggered latches 

and flip-flops. 
• An introduction to commercially available flip-flops. 
  

UPPrroocceedduurree::  
  
11--  UTThhee  SS--RR  LLaattcchh  
The most basic sequential unit is the S-R latch. From this basic circuit flip-flops are 
constructed, and from flip-flops, the registers, memories, and state machines can be made. 
The basic S-R latch has two inputs, S and R, and two outputs, Q and Q`. 

 
 
 
 
 
 
 
 
 
 

                                           Figure(1) 
Similar SR latch can be made from  NANDs as follow: 

 
                                             Figure(2) 
 
 
 

7



CPE 0907234 Digital logic lab 
Page 2 of 6  

 
2- UTThhee  SS--RR  LLaattcchh  wwiitthh  CClloocckk  ((SS--RR  FFlliipp--FFlloopp)) 
To achieve synchronous operation, the latch should change state only on the proper clock 
signal. For example, assume that the latch should change state only when the clock signal 
goes high, else the latch holds its value independently from the value of S and R.  

So we can adjust the circuit we have implemented above to have a third input (Clk). 
 

 
  
                                                                                                    Figure(3) 
  
33--  UDD  FFlliipp--FFlloopp  

 
 

 
 
 
 
 
 
 

                       Figure(4)      
                       
¾ Notice that a D flip flop can be made from S-R flip flop by ensuring that the S and R 

outputs are the complement of each other at all times. 
 
 
44--  UTT  FFlliipp--FFlloopp  

 
 
 
 
 
 
 
 
 
 

              Figure(5) 
 
 
 
 
 
 



CPE 0907234 Digital logic lab 
Page 3 of 6  

55--  UJJ--KK  FFlliipp--FFlloopp  
The J-K flip-flop is simply an S-R flip-flops that has been modified so that both inputs can be 
active at the same time. Where in the S-R flip-flop this condition was considered invalid, in 
the J-K flip-flop this condition toggles the output on successive clock cycles. 

 
 
 

  Figure(6) 
    

 
 

 
 

 
 
 
 
 
 
 
 

   Figure(7)  
 

66--  UMMaasstteerr--SSllaavvee  FFlliipp--FFlloopp  
There is a slight problem with using a clock pulse. During the time the clock is high, the flip-
flop performs identically to the regular asynchronous latch. Thus, if the inputs changed 
multiple times while the clock was high, the state of the latch could also change multiple 
times. One technique for eliminating multiple- state transition during a single clock cycle is 
the use of a master-salve arrangement.  

  
 
                                                                    Figure(8) 
The left or master Latch in Figure above forms the inputs to the flip-flop, and the right or 
slave latch forms the outputs of the flip-flop. The master latch looks at the inputs while the 
clock is high. When the clock returns low, the slave latch is enabled, using the outputs of the 
master latch as its inputs. Thus the inputs are "read" while the clock is high and transferred to 
the outputs when the clock returns low. 
 
 
 
 
 
 
 



CPE 0907234 Digital logic lab 
Page 4 of 6  

77--  UDDiirreecctt  iinnppuuttss::  
 

• Set/Reset independent of clock 
¾ Direct set or preset 
¾¾  Direct reset or clear  
  
  

  
                                                                          FFiigguurree((99))  
  

88--  U33--SSttaaggee  SShhiifftt  RReeggiisstteerr  
A group of cascaded FFs used to store related bits of information is known as a register. A 
register that is used to store information arriving from a source is called a shift register. Each 
FF output of a shift register is connected to the input of the next FF, and a common clock 
pulse is applied to all FFs. Hence, the shift register is a synchronous sequential circuit. The 
storage capacity of a register is the number of bits of digital data it can store. Each FF in a 
register represents one-bit storage capacity, therefore, the number of FFs in a register 
determine its total storage capacity. 

 
 

 
              

 FFiigguurree((1100))    
         

UCCoouunntteerr::  
Counter: is essentially a register that goes through a predetermined sequence of states. 
The gates in the counter are connected in such a way as to produce the prescribed sequence of 
binary states. 
The counting sequence is often depicted by a graph called a state diagram.  
A counter with m-states has the following state diagram: 
 
               
 
 
 
 
 



CPE 0907234 Digital logic lab 
Page 5 of 6  

 
 
Each node Si denotes the states of the counter and the arrows in the graph denote the order in 
which the states occur. 
Counters are available in two categories: ripple (Asynchronous)  counters and synchronous 
counters. 

 
11))      URRiippppllee  ((AAssyynncchhrroonnoouuss))  CCoouunntteerr::  
In a ripple counter, the flip-flop output transition serves as a source for triggering other flip-
flops; In other words, clock inputs of the flip-flops are triggered by output transitions of other 
Flip-flops, rather than a common clock signal. 
The output of each FF is connected to the clock input of the next flip-flop in sequence. 
 
U33--SSttaaggee  AAssyynncchhrroonnoouuss  BBiinnaarryy  CCoouunntteerr  
  
In the previous experiment, the edge−triggered JK FF was wired to operate as a toggle. Every 
time a clock pulse was detected at the input, the output changed state. After two clock pulses 
were detected, the output of the FF returned to its original state. As a result, there were two 
state changes of the output and the frequency of the input clock was divided by two. 
Therefore two events occurred, the number of clock pulses was counted and the frequency of 
the output was divided by 2. The circuit of Figure 3 contains the logic diagram for a three bit 
asynchronous binary counter with Q2 being the MSB. The frequency of the input clock is 
divided by two for the first FF and divided by two for the second FF and then divided by two 
again for the third FF. The frequency at Q2 has been divided by eight or 2n were n is the 
number of FFs in the circuit. There are also eight states in the truth table. This factor 2 P

n
P  is 

also called the Modulus or MOD of the counter. Since this counter has 3 FFs, it is referred to 
as a MOD 8 counter. The MOD of any counter may be modified by connecting the proper 
combinational logic between the outputs of the appropriate FF and the Clear input. To 
convert the counter in Figure 3 to a MOD 7 counter, NAND the Q0, Q1, Q2 inputs and 
connect the output of the NAND gate to the CLEAR input (active low input) of all the FFs. 
Figure 3 is an asynchronous device since the preceding FF must complete one cycle to 
provide the clock pulse for the next FF in the counter. The FFs do not change state at the 
same time and this creates a ripple effect in the way that the output of each FF changes state. 
This ripple effect is more noticeable in a MOD 16 or higher counter when the count resets 
from 15 or the maximum count back to 0. Another name for the asynchronous counter is the 
Ripple Counter. 

 
Figure (11) 

 
 UAdvantages of Ripple Counters: 

• Simple hardware and design. 
 UDisadvantages of Ripple Counters: 

•  They are asynchronous circuits, and can be unreliable and delay dependent, if 
                         more logic is added. 

• Large ripple counters are slow circuits due to the length of time required for      
the ripple to occur. 

 
 



CPE 0907234 Digital logic lab 
Page 6 of 6  

 
 

22))  USSyynncchhrroonnoouuss  BBiinnaarryy  CCoouunntteerrU   
In the previous Asynchronous binary counter example, we saw that the output of one 
counter stage is connected directly to the input of the next counter stage and so on along 
the chain, and as a result the asynchronous counter suffers from what is known as 
"Propagation Delay". However, with Synchronous Counters, the external clock signal is 
connected to the clock input of EVERY individual flip-flop within the counter so that all 
of the flip-flops are clocked together simultaneously (in parallel) at the same time givi ng 
a fixed time relationship. This results in all the individual output bits changing state at 
exactly the same time with no ripple effect and therefore, no propagation delay. 
 

 



 

 

 

 

 

 

University of Jordan 

Faculty of Engineering and Technology 

Department of Computer Engineering 

Digital Logic Laboratory 0907234 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Name: 

 

Student ID: 

 

Section: 

 

 

 

 

 

 

 

 

 

 

 

 

Labsheet 7:  Latches and Flip-Flops 
 



 

 

Part 1: Clocked SR-latch Verilog Implementation and Simulation 
 

  SR-Latch Function table 

 
 
 

 

 
1. Inside the SR2.v file, write a structural Verilog module to implement the clocked SR-latch given 

in Figure1 . The modules for the basic gates are given in the lib.v file. 
 

2. Use the SR2.vwf vector waveform file to perform functional simulation for your module in 

SR2.v (i.e. SR2.v should be set as top-level entity). Validate that the outputs’ values are correct. 

 
3. Paste your SR2.v code and a snap shot of the simulation report in the spaces given below.  

 

Paste your “SR2.v” code here: 

 

 

 

 

 

 
 

Paste a snapshot of your “SR2.v” simulation report here: 

 
 
 
 
 
 
 
 

 

 

Operation R S C Reset 

Reset x x x 1 

Hold x x 0 0 
Hold 0 0 1 0 
Reset 1 0 1 0 

Set 0 1 1 0 
Forbidden 1 1 1 0 

Figure  1 : Clocked SR-latch Implementation 



 

Part 2: D-FF Implementation and Simulation 
 

 

 

 

 

 

 

 

 

 
 

 
1. Fill the function table below with the correct operation for the positive-edge triggered D-FF. 

 
 
 
 
 
 
 
 

 
 

2. Inside the dff1.v file, write a structural Verilog module to implement the D-FF circuit given in 
Figure 2. You need to use the clocked SR-latch module defined in SR2.v and the basic gate 
modules defined in lib.v. 
 

3. Use the dff1.vwf vector waveform file to perform functional simulation for your module in 
dff1.v (i.e. dff1.v should be set as top-level entity). Validate that the outputs’ values are correct. 
 

4. Paste your dff1.v code and a snap shot of the simulation report in the spaces given below.  

 

Paste your “dff1.v” code here: 

 

 

 

 

 

 

 

 
 

 

 

 

Operation D C R 

 x x 1 

 0  0 

 1  0 

Figure 2: D-FF Implementation 



 

Paste a snapshot of your “dff1.v” simulation report here: 

 
 
 
 
 
 
 
 

 

 

 

 
 

 

Part 3: JK-FF Implementation and Simulation 

 
Figure 3: JK-FF Implementation 

1. Fill the function table below with the correct operation for the positive-edge triggered JK-FF. 
 
 
 
 
 
 
 
 
 
 

 

 
2. Inside the jkff1.v file, write a structural Verilog module to implement the JK-FF circuit given in 

Figure 3. You need to use the D-FF module defined in dff1.v and the basic gate modules defined 
in lib.v. 
 

3. Use the jk.vwf vector waveform file to perform functional simulation for your module in jkff1.v 
(i.e. jkff1.v should be set as top-level entity). Validate that the outputs’ values are correct. 

Operation K J C R 

 x x x 1 

 0 0  0 

 1 0  0 

 0 1  0 

 1 1  0 



4. Paste your jkff1.v code and a snap shot of the simulation report in the spaces given below.  
 

Paste your “jkff1.v” code here: 

 

 

 

 

 

 

 
 

Paste a snapshot of your “jkff1.v” simulation report here: 

 
 
 
 
 
 
 
 

 

 

 
 

Part 4: T-FF Implementation and Simulation 
 

 
Figure 4: T-FF Implementation 

 

1. Fill the function table below with the correct operation for the positive-edge triggered T-FF. 
 
 
 
 
 
 

 

Operation T C R 

 x x 1 

 0  0 

 1  0 



2. Inside the tff1.v file, write a structural Verilog module to implement the T-FF circuit given in 
Figure 4. You need to use the D-FF module defined in dff1.v and the basic gate modules defined 
in lib.v. 
 

3. Use the tff1.vwf vector waveform file to perform functional simulation for your module in tff1.v 
(i.e. tff1.v should be set as top-level entity). Validate that the outputs’ values are correct. 

 
4. Paste your tff1.v code and a snap shot of the simulation report in the spaces given below.  

 

Paste your “tff1.v” code here: 

 

 

 

 

 

 

 
 

Paste a snapshot of your “tff1.v” simulation report here: 

 
 
 
 
 
 
 
 

 

 

 

 
 



CPE 0907234 Digital logic lab 
Page 1 of 6  

Experiment 8 
Introduction to Latches and Flip-Flops and registers 

  

IInnttrroodduuccttiioonn::    
The logic circuits that have been used until now were combinational logic circuits since the output of the 

device depends on the input data. Sequential logic circuits are defined as circuits whose outputs depend both 

on the present values of the inputs and the previous state of the circuits. Latches and flip-flops are basic 

sequential circuit whose operation we will investigate during this experiment. The difference between these 

two sequential devices is that flip-flop's output changes only at specific times determined by a clocking 

signal, while latch's output changes independent of a clocking signal. 

Sequential circuits form the basis of registers, memories, and state machines, which in turn are vital 

functional units in digital design. 

 

OObbjjeeccttiivveess::  
 Design, build, and test various sequential logic circuits. 

 An in-depth study of the operation of S-R, J-K, master-slave, and edge-triggered latches and flip-flops. 

 An introduction to commercially available flip-flops. 

  

PPrroocceedduurree::  
11--  TThhee  SS--RR  LLaattcchh  
The most basic sequential unit is the S-R latch. From this basic circuit flip-flops are constructed, and from 

flip-flops, the registers, memories, and state machines can be made. The basic S-R latch has two inputs, S 

and R, and two outputs, Q and Q`. 

 

 

 

 

 

 

 

 

 

 

                                           Figure(1) 

Similar SR latch can be made from  NANDs as follow: 

 
                                             Figure(2) 

 

2- TThhee  SS--RR  LLaattcchh  wwiitthh  CClloocckk  ((SS--RR  FFlliipp--FFlloopp)) 
To achieve synchronous operation, the latch should change state only on the proper clock signal. For 

example, assume that the latch should change state only when the clock signal goes high, else the latch holds 

its value independently from the value of S and R. 

  

 



CPE 0907234 Digital logic lab 
Page 2 of 6  

So we can adjust the circuit we have implemented above to have a third input (Clk). 

 

 
  

Figure(3) 

33--  DD  FFlliipp--FFlloopp  
 

 

 

 

 

 

 

 

 

                       Figure(4)      

                       

 Notice that a D flip flop can be made from S-R flip flop by ensuring that the S and R outputs are the 

complement of each other at all times. 

 

44--  TT  FFlliipp--FFlloopp  
 

 

 

 

 

 

 

 

 

 

              Figure(5) 

 

55--  JJ--KK  FFlliipp--FFlloopp  
The J-K flip-flop is simply an S-R flip-flops that has been modified so that both inputs can be active at the 

same time. Where in the S-R flip-flop this condition was considered invalid, in the J-K flip-flop this 

condition toggles the output on successive clock cycles. 

 

 

 

  

    

 

              Figure(6)                              Figure(7) 

 

    



CPE 0907234 Digital logic lab 
Page 3 of 6  

  

66--  MMaasstteerr--SSllaavvee  FFlliipp--FFlloopp  
There is a slight problem with using a clock pulse. During the time the clock is high, the flip-flop performs 

identically to the regular asynchronous latch. Thus, if the inputs changed multiple times while the clock was 

high, the state of the latch could also change multiple times. One technique for eliminating multiple- state 

transition during a single clock cycle is the use of a master-salve arrangement.  

  
 

                                                                    Figure(8) 

The left or master Latch in Figure above forms the inputs to the flip-flop, and the right or slave latch forms 

the outputs of the flip-flop. The master latch looks at the inputs while the clock is high. When the clock 

returns low, the slave latch is enabled, using the outputs of the master latch as its inputs. Thus the inputs are 

"read" while the clock is high and transferred to the outputs when the clock returns low. 

 

 

77--  DDiirreecctt  iinnppuuttss::  
 

 Set/Reset independent of clock 
 Direct set or preset 

  Direct reset or clear  

  

  

  

                                                                            

                                                                                              FFiigguurree((99))  

  

88--  33--SSttaaggee  SShhiifftt  RReeggiisstteerr  
A group of cascaded FFs used to store related bits of information is known as a register. A register that is 

used to store information arriving from a source is called a shift register. Each FF output of a shift register is 

connected to the input of the next FF, and a common clock pulse is applied to all FFs. Hence, the shift 

register is a synchronous sequential circuit. The storage capacity of a register is the number of bits of digital 

data it can store. Each FF in a register represents one-bit storage capacity, therefore, the number of FFs in a 

register determine its total storage capacity. 

 
 

 

FFiigguurree((1100)) 

  

  

  

  

  



CPE 0907234 Digital logic lab 
Page 4 of 6  

  

CCoouunntteerr::  
Counter: is essentially a register that goes through a predetermined sequence of states. 

The gates in the counter are connected in such a way as to produce the prescribed sequence of binary states. 

The counting sequence is often depicted by a graph called a state diagram.  

A counter with m-states has the following state diagram: 

 

               

 

 

 

 

 

 

 

Each node Si denotes the states of the counter and the arrows in the graph denote the order in which the 

states occur. 

Counters are available in two categories: ripple (Asynchronous)  counters and synchronous counters. 

 

11))      RRiippppllee  ((AAssyynncchhrroonnoouuss))  CCoouunntteerr::  
In a ripple counter, the flip-flop output transition serves as a source for triggering other flip-flops; In other 

words, clock inputs of the flip-flops are triggered by output transitions of other 

Flip-flops, rather than a common clock signal. 

The output of each FF is connected to the clock input of the next flip-flop in sequence. 

 

33--SSttaaggee  AAssyynncchhrroonnoouuss  BBiinnaarryy  CCoouunntteerr  

  

In the previous experiment, the edge−triggered JK FF was wired to operate as a toggle. Every time a clock 

pulse was detected at the input, the output changed state. After two clock pulses were detected, the output of 

the FF returned to its original state. As a result, there were two state changes of the output and the frequency 

of the input clock was divided by two. Therefore two events occurred, the number of clock pulses was 

counted and the frequency of the output was divided by 2. The circuit of Figure 3 contains the logic diagram 

for a three bit asynchronous binary counter with Q2 being the MSB. The frequency of the input clock is 

divided by two for the first FF and divided by two for the second FF and then divided by two again for the 

third FF. The frequency at Q2 has been divided by eight or 2n were n is the number of FFs in the circuit. 

There are also eight states in the truth table. This factor 2
n

  is also called the Modulus or MOD of the 

counter. Since this counter has 3 FFs, it is referred to as a MOD 8 counter. The MOD of any counter may be 

modified by connecting the proper combinational logic between the outputs of the appropriate FF and the 

Clear input. To convert the counter in Figure 3 to a MOD 7 counter, NAND the Q0, Q1, Q2 inputs and 

connect the output of the NAND gate to the CLEAR input (active low input) of all the FFs. Figure 3 is an 

asynchronous device since the preceding FF must complete one cycle to provide the clock pulse for the next 

FF in the counter. The FFs do not change state at the same time and this creates a ripple effect in the way that 

the output of each FF changes state. This ripple effect is more noticeable in a MOD 16 or higher counter 

when the count resets from 15 or the maximum count back to 0. Another name for the asynchronous counter 

is the Ripple Counter. 

 
Figure (11) 

 



CPE 0907234 Digital logic lab 
Page 5 of 6  

 

 

 Advantages of Ripple Counters: 
 Simple hardware and design. 

 Disadvantages of Ripple Counters: 
  They are asynchronous circuits, and can be unreliable and delay dependent, if 

                         more logic is added. 

 Large ripple counters are slow circuits due to the length of time required for      the ripple to 

occur. 

 

22))  SSyynncchhrroonnoouuss  BBiinnaarryy  CCoouunntteerr   
In the previous Asynchronous binary counter example, we saw that the output of one counter stage is 

connected directly to the input of the next counter stage and so on along the chain, and as a result the 

asynchronous counter suffers from what is known as "Propagation Delay". However, with Synchronous 

Counters, the external clock signal is connected to the clock input of EVERY individual flip-flop within 

the counter so that all of the flip-flops are clocked together simultaneously (in parallel) at the same time 

giving a fixed time relationship. This results in all the individual output bits changing state at exactly the 

same time with no ripple effect and therefore, no propagation delay. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CPE 0907234 Digital logic lab 
Page 6 of 6  

33))  BBCCDD  CCoouunntteerr  ((7744LLSS116600))  
Since some digital functions are performed in BCD, the decade counter is often used. 

 
Figure 5 

 CK: The counter clock. 

 EN.P, EN.T: Are the two active high enable signals. 

 QAQBQCQD: 4-bit counter output. 

 RES: Active low reset input; when RES = 0 then the output QAQBQCQD = 0000.  

 LOAD: active low load input; if:  

- LOAD = 0 then the counter start counting from the value on the inputs (IN.A, IN.B, IN.C, IN.D) to 

9 each clock cycle. 

- LOAD = 1 then the counter start counting from the value on QAQBQCQD to 9 each clock cycle. 

 IN.A, IN.B, IN.C, IN.D: The starting count value when LOAD = 0.  

 

Ex1:                                        EX2:                                         EX3: 
IN.A IN.B IN.C IN.D = 0101              IN.A IN.B IN.C IN.D = 0101              IN.A IN.B IN.C IN.D = 0101 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Note that if you want to count like 5,6,7,8,9,5,6,…as in EX3 above then the LOAD input should be 0 

when counter output reaches 9 to take the loaded value (5) not (0). 

 RCO: The output that become “1” when the value on QAQBQCQD = 1001 and “0” otherwise. 

This input is used to ensure that the load input become “0” when the counter output reaches “9” by 

connecting RCO to inverter (because LOAD IS ACTIVE LOW) and the output of the inverter to the 

LOAD input. 

 

CLOCK Counter 

output  

LOAD 

1 0 1 

2 1 1 

3 2 1 

4 3 1 

5 4 1 

6 5 1 

7 6 1 

8 7 1 

9 8 1 

10 9 1 

11 0 1 

CLOCK Counter 

output  

LOAD 

1 5 0 

2 5 0 

3 6 1 

4 7 1 

5 8 1 

6 9 1 

 7 0 1 

8 5 0 

9 5 0 

10 5 0 

11 6 1 

CLOCK Counter 

output  

LOAD 

1 5 0 

2 6 1 

3 7 1 

4 8 1 

5 9 1 

6 5 0 

 7 6 1 

8 7 1 

9 8 1 

10 9 1 

11 5 0 



 

 
 

 

 

 

 

       

University of Jordan 

Faculty of Engineering and Technology 

Department of Computer Engineering 

Digital Logic Laboratory 0907234 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Name: 

 

Student ID: 

 

Section: 

 

 

 

 

 

Labsheet8:  Shift Register & Counter Design 

 



 

Problem Description: 
 
In this experiment, you are required to implement the circuit shown in Figure  1 . The circuit consists 
of two components: a 3-bit synchronous counter and a 3-bit shift register. Note that the “clk” input 
of the counter is obtained from the external “clk” input. On the other hand, the “clk” input of the 3-
bit register is obtained from the “zero_count” output of the 3-bit counter. The “zero_count” output 
is 0 when counter outputs C2, C1, and C0 equal 001, 010, 011, 100, 101, 110, or 111. On the other 
hand, the “zero_count” output is 1 when counter outputs C2, C1, and C0 equal 000. 
 

 

Part 1: 3-bit Synchronous Counter 

In this part, you are required to design a 3-bit count-down counter that counts 7, 6, 5, 4, 3, 2, 1, 0, 7, 
6, 5, 4, … and so on using D flip-flops. 
 
1. Fill the following state table according to the required counter design.   (PreLab) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Present State Next State 
C2 C1 C0 C2 C1 C0 D2 D1 D0 

0 0 0       

0 0 1       

0 1 0       

0 1 1       

1 0 0       

1 0 1       

1 1 0       

1 1 1       

Figure  1 : A 3-bit Shift Register Controlled by a 3-bit Down Counter 



 

2. Use the k-maps below to derive the optimized input equations of the three flip flops. (PreLab) 
       

D0=       
 

 
 

 
D1=     
 

 
 
 

D2 = 
 
 
 
 

3. Draw the sequential circuit that implements the 3-bit counter. Add to your circuit the gate(s) 
required to generate the output signal “zero_count”. 
 

4. In the file “threebitcounter.v”, write a Verilog module that implements the 3-bit counter with 
the “zero_count” signal structurally using the modules defined in “lib.v” and “dff1.v”. 

 

5. Set “threebitcounter.v” as your top-level entity, compile, and perform functional simulation 
using the file “Counter.vwf”. Make sure that your counter design works as expected, then paste 
your code and simulation report below. 

 

Paste your “threebitcounter.v” code here: 

 

 

 

 
    

Paste a snapshot of your “threebitcounter.v” simulation report here: 

 

 

 

 

 

 

    

    

    

    

    

    



 

6. Convert the 3-bit counter you built to a block as in the figure below. This block will be used in 
the final circuit implementation in part 3. Do the following: 

File  Create/Update  Create Symbol Files for Current Files 
 

 
Part 2: 3-bit Shift-Register 

1. In the file “reg3b.v”, write a Verilog module that implements the 3-bit shift register shown in 
Figure 2 structurally using the modules defined in “mux1.v” and “dff1.v”. Notice that the shift 
register has four modes of operation according to the following table. The m1 and m0 bits 
represent the “Mode” bits used as select lines for the multiplexers. 

 
m1 m0 Operation 

0 0 Hold 
0 1 Parallel Load 
1 0 Rotate Right 
1 1 Rotate Left 

 

 
Figure 2: 3-bit Shift Register 

2. Set “reg3b.v” as your top-level entity, compile, and perform functional simulation using the file 
“Reg.vwf”. Make sure that your shift register design works as expected, then paste your code 
and simulation report below. 
 

Paste your “reg3b.v” code here: 

 

 

 

 



 

 
Paste a snapshot of your “reg3b.v” simulation report here: 

 

 

 

 

 

 

3. Convert the 3-bit shift register you built to a block as in the figure below. This block will be used 
in the final circuit implementation in part 3. Do the following: 

File  Create/Update  Create Symbol Files for Current Files 
 

 
Part 3: Final Circuit 

1. Create a new schematic file and save it as “circuit1.bdf”. In the file, build the schematic diagram 
shown in Figure 1. This can be done by adding the segdecoder symbol, clock symbol, 3-bit 
counter (threebitcounter) symbol, and 3- bit register (reg3b) symbol to your bdf file. In order to 
add these symbols to your design, select the symbol of AND gate on the tool bar then expand the 
project menu. If you cannot find the symbols under the project menu, you can add them by typing 
the symbol name in the text box below. 
 

2. Connect the symbols and add input (i.e. clk, restart, P0, P1, P2, m0, m1) and output (i.e. Out0, 
Out1, Out2, a, b, c, d, e, f, g) ports. 

 

3. Important Notes: 
a. The block “clock.bsf” has one input “os_clock” and one output “out_clock”. This module 

implements a frequency division circuit which will be used to divide the high frequency 
clock of the FPGA oscillator (28 MHz) to obtain a slower clock (10 Hz) so that changes in 
the counter value can be detected on the 7-segment display and provide sufficient time for 
register setup. Hence, in your schematic diagram you are required to connect the “os_clock” 
to an input pin called “clk” (which will be assigned to the oscillator clock when you do pins 
assignment) and connect “out_clock” to the counter clock input. 

b. In your schematic diagram connect the clock input of the register to the output zero_count 
of the counter. This means that the state of the register will be updated each time the 
counter reaches count 0 according to the mode setting. 

    
 



 

4. Assign the following pins to the inputs and outputs in the “circuit1.bdf” file, download your 
design on the FPGA, and test it.  

 
Input Switches 

clk  PIN_E16 
restart iSW[1] PIN_AB26 

m0 iSW[2] PIN_AB25 
m1 iSW[3] PIN_AC27 
P0 iSW[4] PIN_AC26 
P1 iSW[5] PIN_AC24 
P2 iSW[6] PIN_AC23 
Outputs of the segdecoder 
a oHEX0_D[0] PIN_AE8 
b oHEX0_D[1] PIN_AF9 
c oHEX0_D[2] PIN_AH9 
d oHEX0_D[3] PIN_AD10 
e oHEX0_D[4] PIN_AF10 
f oHEX0_D[5] PIN_AD11 
g oHEX0_D[6] PIN_AD12 

Outputs of the Shift Register 
Out0 oLEDR[1] PIN_AK5 
Out1 oLEDR[2] PIN_AJ5 
Out2 oLEDR[3] PIN_AJ4 

  
 


