Experiment 1
Introduction to Altera and Schematic Programming

Prepared by: Eng. Shatha Awawdeh, Eng.Eman Abu_Zaitoun

Introduction:

This tutorial introduces the basic features of the Quartus 1l software. It shows how the software can
be used to design and implement a circuit specified by using the means of a schematic diagram. It makes
use of the graphical user interface to invoke the Quartus Il commands.

Objectives:

« Creating a project.

« Design entry using schematic diagram.

« Assigning the circuit inputs and outputs to specific pins on the FPGA.
« Simulating the designed circuit.

* Programming and configuring the FPGA device.

1- Getting Started:

Each logic circuit, or sub circuit, being designed with Quartus Il software is called a project. The
software works on one project at a time and keeps all information for that project in a single directory
(folder) in the file system.

To begin a new logic circuit design, the first step is to create a directory to hold its files. To hold
the design files for this lab, we will use a directory Exp2. The running example for this Experiment is a
simple circuit for Xor gate (A XOR B = (A& (~B)) | ((~A) &B)).

Start the Quartus Il software. You should see a display similar to the one in Figure 1. This display
consists of several windows that provide access to all the features of Quartus Il software, which the user
selects with the computer mouse. Most of the commands provided by Quartus Il software can be accessed
by using a set of menus that are located below the title bar (File, Edit, view, project...).

Q Quartus Il [__]W

File Edit Miews Projeck Assignments Processing Tools ‘Window Help

DwHa (& & ER|o | E]

EEC LA IA e A R
———————

Project Mavigatar
E ity |
Cormpilatian H|erarchy|

AITERA

" @y Hisrsrchy [B Files | g Dissign Urits |

Status - X
M odule | Progress 2 [Time & |

QUARTUS II

& Documentation

£
[
=
w
1]
u
o
o

System Processing Extra Info Info Wwharning)\ Critical Waming)\ Ermor]\ Suppressed)\ Flag ,'

I""esmga—ilill\.ucatiun. LI Locate I

Messages——————————— -

Figure 1. The main Quartus Il display.

Page 1 of 16

1.1 Quartus 11 Online Help

Quiartus Il software provides comprehensive online documentation that answers many of the questions
that may arise when using the software. The documentation is accessed from the Help menu. To get some
idea of the extent of documentation provided, it is worthwhile for the reader to browse through the Help
menu. For instance, selecting Help > How to Use Help gives an indication of what type of help is provided.
The user can quickly search through the Help topics by selecting Help > Search, which opens a dialog box
into which keywords can be entered. Another method, context-sensitive help, is provided for quickly
finding documentation for specific topics. While using most applications, pressing the F1 function key on
the keyboard opens a Help display that shows the commands available for the application.

2- Starting a New Project
To start working on a new design we first have to define a new design project. Quartus Il software
makes the designer’s task easy by providing support in the form of a wizard.

1. Create a new project; select File > New Project Wizard to reach the window in Figure 2b, which asks
for the name and directory of the project.
QQuartus n E]@

File Edit Yiew Project Assignments Processing Tools Window Help

1 mew... Chrl+h 3w “ j

= Open... ctrl+o ®|'®{§|5|@|®|H|

@ New Project Wizard. ..

B Open Project... Chrl+3

Convert MAX-+PLUS 11 Project... m
']
- x
—— Vers
® Documentation
Create [Update L4
Canvert Programming Files. .. |
| u]
&

Recent Files L4

Infa wlarning Critical W arning Error Suppressed Flag

JI =l Locate
[memew T e [w4

Figure 2a. Creation of a new project.
2. Set the working directory to be Exp2, The project must have a name, which is usually the same as the
top-level design entity (schematic circuit) that will be included in the project. Choose Xorl as the name for
both the project and the top-level entity, as shown in Figure 2b.

Hew Project Wizard: Directory. Name . Top-Level Entity [page 1 of 5]

Recent Projects »

Exit Alt+F4

“w'hat iz the working directory for this project?

IC.\allela\?2\quarlus\£xp2 I
‘wihat iz the name of this project?

[pod1 o |
“Wwhhat iz the name of the top-level design entity far thiz project? Thiz name is case zenzitive and must
exactly match the entity name in the design fils.

I><or1 I

Iz Existing Project Settings ...

< Back I Mext > I Firish I Cancel I

Figure 2b. Creation of a new project.

Page 2 of 16

Press Next. Since we have not yet created the directory Exp2, Quartus Il software displays the pop-up
box in Figure 3 asking if it should create the desired directory. Click Yes, which leads to the window in
Figure 4.

Quartus 1l

! E Directory "C: /alkera)72/quartus/Exp2" does not exist, Do vou want ko create it?
-

Yes Mo |

Figure 3. Quartus Il software can create a new directory for the project.

3. The wizard makes it easy to specify which existing files (if any) should be included in the project.
Assuming that we do not have any existing files, click Next, which leads to the window in Figure 5.

Mew Project Wizard: Add Files [page 2 of 5]

Select the design files you want ta include in the project. Click Add All to add all design files in the
project directony ta the project. Maote: pou can always add design files to the project later.

File name: ||
File name | Type | Library | Diezign entryszy. | HOL wersion Add All

L

< >

Specify the path names of any non-default libraries. Uszer Libraries.

< Back I Mext = | Finizh | Cancel |

Figure 4. The wizard can include user-specified design files.

4. We have to specify the type of device in which the designed circuit will be implemented. Choose
Cyclonell as the target device family. We can let Quartus 1l software select a specific device in the family,
or we can choose the device explicitly. We will take the latter approach. From the list of available devices,
choose the device called EP2C70F896C6 which is the FPGA used on Altera’s DE2 board. Press Next,
which opens the window in Figure 6.

Mew Project Wizard: Family & Device Settings [page 3 of 5]

Select the Family and dewvice pou want ko target for compilation.

Show in ‘Available device' list

Farnily: Cyclone Il -

T arget device

Package: A -

Fi t: A =
" Auto device selected by the Fitter 1 GoLn ik

*+ Specific device selected in 'Svailable devices' list Speed grade: Ay &2

v Show advanced devices

-
Available devices:
Mame | Care w.. I LEs | Lzer |/ I temor.... | Embed. | FLL -~
EP2C50U484C7 1.2 50528 294 594432 172 4
EFP2CE0U484C8 1.2 60528 294 94432 172 4
EFP2CE0U 48418 1.2 60628 294 694432 172 4
EP2C7OFE72CE 1.2 8416 422 1152000 300 4
EF2C7OFE72C7 1.2 ES41E 422 1152000 300 4
EFP2C7OFE72CE 1.2 ES41E A22 1152000 300 4
EF2C7OFE72I8 1.2 ES41E 422 1152000 300 4
EFP2C7OFS9ECE 1.2 ES41E Ez22 1152000 300 4 =
nnnnnnnnnnnn BT coatic == 14ESAnn ann 4
< >
N

< Back I Mext > I Firish | Cancel |

Figure 5. Choose the device family and a specific device

Page 3 of 16

5. The user can specify any third-party tools that should be used. A commonly used term for CAD software
for electronic circuits is EDA tools, where the acronym stands for Electronic Design Automation. This
term is used in Quartus Il messages that refer to third-party tools, which are the tools developed and
marketed by companies other than Altera. Since we will rely solely on Quartus 11 tools, we will not choose
any other tools. Press Next.

Mew Project Wizard: EDA Tool Settings [page 4 of 5]

Specify the other EDA toals - in addition to the Quartus || software -- used with the project.

i Design Entry/Synthesi

Tool name: |<None> ;I
Farmat: I ;I
I~ Ruri this tool autornatically to spnthesize the curent design

— Simulation
Tool name: |<None> LI
Format: I ;I
I~ Flun gatelevel simulation automatizally after compilation

~ Timing Analysi
Tool name: |<None> LI
Farmat: I LI
I™ Fiur this tool autormatically after compilation

< Back I Mext » I Finizh | Cancel

Figure 6. Other EDA tools can be specified.

6. A summary of the chosen settings appears in the screen shown in Figure 7. Press Finish, which returns
to the main Quartus Il window, but with Xor specified as the new project, in the display title bar, as
indicated in Figure 8.

-

Mew Prujecl Wizard: Summary [pﬂge 5 of 5] @Quﬂrlus Il - C:/alteral/7 2/quartus/Exp2/Xor - Xor E]@
File Edt View Project Assignments Processing Took Window Help
“When you click Finish, the project will be created with the following settings: DEda |§ | & L= | o me LI
H @O D e s r 88|46
Praject directory: Project Mavigator ————————————— . x
C:/altera/72/quartus/Exp2/ Entity
Project name: or & Eicln;n:'\\ EF2C70FES
Top-level design entity: Hor Mm
Murnber of files added:] -
Mumber of user libraries added: 0
Device assignments: UA R T T T qo
Family name: Cyclone I e T x -
Device: EPZCTOFS3ECE Module | Progress 2 [Time & | Ve
EDA ook
Design entry/ spnthesis: <MNanex
Simulation <Mone> *|[Type [Hessase |
Timing analysis <MNones

Operating conditions:
Core voltage: 1.2¢
Junction temperature range: 0-85 °C

Spstem /i Processing i Exbialnfo J, Info by "Waming J CriicalWaming J, Enor J, Suppressed), Flag /.

Messages

< Back | Hexts I Finish I Cancel IMESsage ll il I = &I
= \ e W | ide |
Figure 7. Summary of the project settings. Figure 8. The Quartus Il display for the created project.

3- Design Entry Using the Graphic Editor

As a design example, we will use the Xor circuit shown in Figure 9. The circuit has two input
switches x1 and x2, where a closed switch corresponds to the logic value 1. The truth table for the circuit is
also given in the figure.

. X1 X2] f

i 1 > 0[o] o

i 01 1

v) >——=af 1Tl 1

s 1[1] 0
! [

Figure 9. The Xor function circuit.

Page 4 of 16

The Quartus Il Graphic Editor can be used to specify a circuit in the form of a block diagram.
Select File > New to get the window in Figure 10, choose Block Diagram/Schematic File, and click OK.
This opens the Graphic Editor window.

Hew

w

Device Dezign Files l Other Files

AHDL File

Block. DiagramS chematic File
EDIF File

SOPC Builder System

State Machine File

Yerilog HOL File

WHOL File

(o]

Cancel

Figure 10. Choose to prepare a block diagram

The first step is to specify a name for the file that will be created. Select File > Save As to open the
pop-up box depicted in Figure 11. In the box labeled Save as type choose Block Diagram/Schematic File
(*.bdf). In the box labeled File name type Xorl, to match the name given in Figure 2b, which was
specified when the project was created. Put a checkmark in the box Add file to current project. Click
Save, which puts the file into the directory Exp2 and leads to the Graphic Editor window displayed in

Figure 12.

e

Save As

w

[

Save in: |) Exp2

NEE
((£

My Recent
Documents

Desktop

-‘—'—lf
My Documents

s

4y Computer

® of E-

File: narne: |><0r1

Lef L

-
-._ " Save as ype:

|Block Diagram/5 chematic File [*.bdf]

Iv &.dd file bo curent project

Save |
Cancel

Figure 11. Name the file.

2] Rodbdt

Figure 12. Graphic Editor window.

Page 5 of 16

3.1 Importing Logic-Gate Symbols

The Graphic Editor provides a number of libraries which include circuit elements that can be
imported into a schematic. Double-click on the blank space in the Graphic Editor window, or click on the
icon in the toolbar that looks like an AND gate. A pop-up box in Figure 13 will appear.

Expand the hierarchy in the Libraries box as shown in the figure. First expand libraries, and then
expand the library primitives, followed by expanding the library logic which comprises the logic gates.
Select and2, which is a two-input AND gate, and click OK. Now, the AND gate symbol will appear in the
Graphic Editor window. Using the mouse, move the symbol to a desirable location and click to place it
there.

Import the second AND gate, which can be done simply by positioning the mouse pointer over the
existing AND-gate symbol, right-clicking, and dragging to make a copy of the symbol. A symbol in the
Graphic Editor window can be moved by clicking on it and dragging it to a new location with the mouse
button pressed. Next, select or2 from the library and import the OR gate into the diagram. Then, select not
and import two instances of the NOT gate. Rotate the NOT gates into proper position by using the “Rotate
left 90" icon. Arrange the gates as shown in Figure 14.

Symbol
Libraries:
= E’ c:/alterad7 2/ quartus/libranies| A
FHED megafunctions
BIET others
EHE primitives
FHET buffer
EE logic
-EY and12
AT and?
-EF and3
-EF andd
B} and6
- andf
B} band12
AT hand? B
< ¥
M ame: o
|andz2 J i
Iv¥ Repeatinzert mode o
-
-
Megawizard Plug-n Manager... | -
()8 | Cancel | s

Figure 13. Choose a symbol from the library.

Figure 14. Import the gate symbols into the Graphic Editor window.

3.2 Importing Input and Output Symbols

Having entered the logic-gate symbols, it is now necessary to enter the symbols that represent the
input and output ports of the circuit. Use the same procedure as for importing the gates, but choose the port
symbols from the library primitives/pin. Import two instances of the input port and one instance of the
output port, to obtain the image in Figure 15.

Page 6 of 16

Figure 15. Import the input and output pins.

Assign names to the input and output symbols as follows. Make sure nothing is selected by
clicking on an empty spot in the Graphic Editor window. Point to the word pin_name on the top input
symbol and double-click the mouse. The dialog box in Figure 16 will appear. Type the pin name, x1, and
click OK. Similarly, assign the name x2 to the other input and f to the output. Alternatively, it is possible
to change the name of an element by selecting it first, and then double-clicking on the name and typing a
new one directly.

Pin Properties

General l Eamet]

To create multiple pins, enter a name in AHDL bus notation [for example,
"tame[3..0]"], or enter a comma-separated list of names.

Pin namefsk |1l

Drefault walue: |\-"CC ﬂ

ak. | Caricel

Figure 16. Naming of a pin.

3.3 Connecting Nodes with Wires

The symbols in the diagram have to be connected by drawing lines (wires). Click on the icon in
the toolbar to activate the Orthogonal Node Tool. Position the mouse pointer over the right edge of the x1
input pin. Click and hold the mouse button and drag the mouse to the right until the drawn line reaches
the pinstub on the top input of the AND gate. Release the mouse button, which leaves the line connecting
the two pinstubs. Next, draw a wire from the input pinstub of the leftmost NOT gate to touch the wire that
was drawn above it. Note that a dot will appear indicating a connection between the two wires.

Use the same procedure to draw the remaining wires in the circuit. If a mistake is made, a wire can
be selected by clicking on it, and removed by pressing the Delete key on the keyboard. Upon completing
the diagram, click on the icon , to activate the Selection Tool. Now, changes in the appearance of the
diagram can be made by selecting a particular symbol or wire and either moving it to a different location or
deleting it. The final diagram is shown in Figure 17; save it.

Page 7 of 16

@ J.0 0] 8
3}@-—" 0O

Figure 17. The completed schematic diagram.

4- Compiling the Designed Circuit

The entered schematic diagram file, Xor.bdf, is processed by several Quartus Il tools that analyze
the file, synthesize the circuit, and generate an implementation of it for the target chip. These tools are
controlled by the application program called the Compiler.

Run the Compiler by selecting Processing > Start Compilation, or by clicking on the toolbar icon
that looks like a purple triangle ™. As the compilation moves through various stages, its progress is
reported in a window on the left side of the Quartus Il display. Successful (or unsuccessful) compilation is
indicated in a pop-up box.

Acknowledge it by clicking OK, which leads to the Quartus Il display in Figure 18. In the message
window, at the bottom of the figure, various messages are displayed. In case of errors, there will be
appropriate messages given.

When the compilation is finished, a compilation report is produced. A window showing this report
is opened automatically, as seen in Figure 18. The window can be resized, maximized, or closed in the
normal way, and it can be opened at any time either by selecting Processing > Compilation Report or by
clicking on the icon & .

The report includes a number of sections listed on the left side of its window. Figure 18 displays
the Compiler Flow Summary section, which indicates that only one logic element and three pins are
needed to implement this tiny circuit on the selected FPGA chip.

Project havigator & X 1 v b | € Compilation Report - Flow Summary |
ity | e Copilation Report Flow Summary
Cycone L EF2 | (= 250" 0 ore
- 2 Wl EHT Flow Summary
S8 Flow Settings Flow Status Successiul - Sun Jan 24 11:20:25 2010
gé E:g: guagiedfi‘“r:?k'ba‘ Setings Quartus || Version 7.2 Build 151 03/25/2007) Wb Edition
EE FlowLon Flevision Name: Xorl
- BB Andlyss & Sythesis Top-evel Ently Name Harl
1] Fitter Family Cyelone I
-] Assembler Device EP2C7OFBISCE
+ & Timing Analyzer Timing Models Final
Met timing requirements Yes
Totallogic elements 1768416 (<1 %)
< 5 Tolal combinational functions 1 /68,416 (<1 %)
= Dedicated logis registers 0/68.416(0%)
EEIE - 0
T E———— Total pins 3IE22(<1%)
oy — Total vitual pins i
Pl Complation Total memery bits 0/1,152.000(0%)
Analysis 5 Embedded Multiplier 3-bit elements 0/300(0%)
Fitter TotalPLLs 0/4(0%]
Assembler [
< > < 5
x Type [Hessage
i Info:
\i} Info: Rumning Quartus IT Classic Timing Analyzer
] Info: Comwand: quartus_tan --read settings files=off --write settings files=off Xorl -¢ Xorl -—timing smalysis_only
\i} Info: Longest tpd from source pin "x1" to destination pin "£" is 12.189 ns
] Tnfo: Quartus IT Classic Timing knalyzer was successful. 0 errars, 0 varnings
] Info: Quartus II Full Compilation was successful. 0 errors, & warnings
<

Figure 18. Display after a successful compilation.

Page 8 of 16

In the case of unsuccessful compilation, Figure 19 shows the compilation report (Flow Summary).

PG [MDHRET = & P Hor b } & Compilation Report - Flow Summary 1
 Erdt I [EF3 Compllation Repart Flow Summary
Cyclane Il EP2 SB Lega Notice
* For S Flow Summary
SR Flow Settings Flaw Stalus Flow Failed - Sun Jan 24 D3:16:27 2010
G ow o Dk bl st Quartus l Varsion 7.2 Build 151 [13/26/2007 5. Web Editon
B Flow Elapsed Time X
EB Flowlog Rievision Name Ko
= & Analysis & Synthesis Topevel Entity Name Hor
Family Cyclone Il
Device EP2C7OFBIECE
Timing Models Final
tdet timing requirements M
Total logic: elements N until Partition Merge
3 > Total combinational functions M until Partition Merge
7 B Dedicated logic iegisters M8 until Partition Merge:
Total registers M until Partition Merge
Err——— Tolal pins N/& until Parttion Merge
Module i Total virtual pire M until Partition Merge
Ful Complation || Total memory bits N4 until Partition Merge
Analpsis 5, Embedded Multiplier 3-bit elements N/ until Partition Merge
Fiter Total PLLs N4 untl Partition Merge
Azsembler [y
4 14 < ¥

Figure 19. Compilation report for the failed design.

In the message tab, all errors will be shown, see Figure 20

|Hessage

Info: Command: quartus_map --read settings_filea=on --write_settings_files=off Xorl -c Xorl
Info: Found 1 design units, including 1 entities, in source file Xorl.bdf

Info: Elahorating entity "Xorl"™ for the top lewel hierarchy

Error: Port "IN1" of type ORZ of instance "inst2" is missing source signal

Error: Can't elaborate top-lewel uszer hierarchy

Error: Quartus II dnalysis & Synthesis was unsuccessful. 2 errors, 0 warnings

Error: Quartuzs II Full Compilation was unsuccessful. 2 errors, 0 warnings

D\Pmcessing [S]A Extra Info)\ Info (5] (7\ ‘W arning 2\' Critical Warning)\ Errar (4])\ Suppreszed)‘Flag /

Figure 20. Error messages.

| € Compilation leport - Anapsis & Syrthesis Messages |

&
p-—'-—'D:} %‘

o

sO0REDSJT]0d
ih g

/40

Figure 21. Identifying the location of the error.

After correcting all errors, recompile the circuit.

5- Simulating the Designed Circuit

Before implementing the designed circuit in the FPGA chip on the DE2 board, it is prudent to
simulate it to ascertain its correctness. Quartus Il software includes a simulation tool that can be used to
simulate the behavior of a designed circuit. Before the circuit can be simulated, it is necessary to create the
desired waveforms, called test vectors, to represent the input signals. It is also necessary to specify which
outputs, as well as possible internal points in the circuit, the designer wishes to observe. The simulator
applies the test vectors to a model of the implemented circuit and determines the expected response. We
will use the Quartus 11 Waveform Editor to draw the test vectors, as follows:

Page 9 of 16

1. Open the Waveform Editor window by selecting File > New>Other Files tab, which gives the window
shown in Figure 26.Choose Vector Waveform File and click OK.

Hew

Device Desion Files Other Files

AHDL Include File

Block Symbol File

Chain Description File
Hexadecimal [Intel-Format] File
In-System Sources and Probes Editar File
Lagic Analyzer Interface File
tdemary nitialization File
SignalT ap Il Logic Analyzer File
Synopzys Design Constraints File
Tel Script File

Text File

Wector Waveform File

Cancel

Figure 26. Need to prepare a new file.

2. The Waveform Editor window is depicted in Figure 27. Save the file under the name Xor.vwf; note that
this changes the name in the displayed window. Set the desired simulation to run from 0 to 200 ns by
selecting Edit > End Time and entering 200 ns in the dialog box that pops up. Selecting View > Fit in
Window displays the entire simulation range of 0 to 200 ns in the window, as shown in Figure 28. You
may wish to resize the window to its maximum size.

o b | & compiation Riepor - Legal Motice | <& Assignment Editor [ird Waveforml.vwf |
=) Master Time Bar. 131 ns o| | Painter 500 ps Interval 26ns Start: End:
N A . Ve e | PP 1000s 200 s ETES |
% @ i 131n 131
O || feeee———

< >

Figure 27. The Waveform Editor window.

B Horbdt | 1A waveform1 vw- |
= Mastet Time Bar: 131 s +| ¥|Peiter 267ns Interval: A043ns St End
A ps 400 E 1200ns 160,0ns 2000
e Name | Veee! 13T
EJEN f
=

Figure 28. The augmented Waveform Editor window.
3. Next, we want to include the input and output nodes of the circuit to be simulated. Click Edit > Insert>
Insert Node or Bus to open the window in Figure 29.

Insert Mode or Bus “
I arme: || 0k |
Type: [IMPUT | Cancel
Yalue bype: | 9-Lewvel ﬂ Mode Finder...
Radix |ascil =]

Bus width: |1
Start index: |D
I Digplay gray code count as binary count

Page 10 of 16

Figure 29. The Insert Node or Bus dialogue.

It is possible to type the name of a signal (pin) into the Name box, but it is easier to click on the
Node Finder button to open the window in Figure 30. The Node Finder utility has a filter used to indicate
what type of nodes are to be found. Since we are interested in input and output pins, set the filter to Pins:
all. Click the List button to find the input and output nodes as indicated on the left side of the figure.

Node Finder
Mamed: |" j Filtes: |Pm all j Customize. . | List ‘
Laak.in; [béort]| ﬂJ IV Include subentities Cancel
Modes Found; Selected Nodes:
Mame | Assignments | T Name ‘ Assighments | T
tedi FIN_ACT3 C
gl FIN_WS Ir
52 FIN_V10 Ir
]
»>
—
<<
£ bd £ bd

Figure 30. Selecting nodes to insert into the Waveform Editor.

Click on the x1 signal in the Nodes Found box in Figure 30, and then click the | > |sign to add it to
the Selected Nodes box on the right side of the figure. Do the same for x2 and f. Click OK to close the
Node Finder window, and then click OK in the window of Figure 29. This leaves a fully displayed
Waveform Editor window, as shown in Figure 31. If you did not select the nodes in the same order as
displayed in Figure 31, it is possible to rearrange them. To move a waveform up or down in the Waveform
Editor window, click on the node name (in the Name column) and release the mouse button. The
waveform is now highlighted to show the selection. Click again on the waveform and drag it up or down in
the Waveform Editor.

) stort bat | 10 wavetorm1_vwt*

B | et Tine Tains o | Painter 237ns Interval 10730s Sta End

A e | v T _ 400ns B0 s 120015 1600 ns 2000+
%6 31ns Tns
= 0 ¥l Al
w1 w a1
o all
L R For B

Figure 31. The nodes needed for simulation.
4. We will now specify the logic values to be used for the input signals x1 and x2 during simulation. The
logic values at the output f will be generated automatically by the simulator. To make it easy to draw the
desired waveforms, the Waveform Editor displays (by default) vertical guidelines and provides a drawing
feature that snaps on these lines (which can otherwise be invoked by choosing View > Snap to Grid).
Observe also a solid vertical line, which can be moved by pointing to its top and dragging it horizontally.
This reference line is used in analyzing the timing of a circuit; move it to the time = 0 position.
The waveforms can be drawn using the Selection Tool, which is activated by selecting the icon [, in the
toolbar, or the Waveform Editing Tool, which is activated by the icon & .

To simulate the behavior of a large circuit, it is necessary to apply a sufficient number of input
valuations and observe the expected values of the outputs. In a large circuit the number of possible input

Page 11 of 16

valuations may be huge, so in practice we choose a relatively small (but representative) sample of these
input valuations.

However, for our tiny circuit we can simulate all different combinations (00, 01, 10, 11) given in
Figure 9. We will use four 50-ns time intervals to apply the four test vectors. We can generate the desired
input waveforms as follows. Click on the waveform name for the x1 node. Once a waveform is selected,
the editing commands in the Waveform Editor can be used to draw the desired waveforms. Commands are
available for setting a selected signal to 0, 1, unknown (X), high impedance (Z), don’t care (DC), inverting
its existing value (INV), or defining a clock waveform. Each command can be activated by using the Edit
> Value command or via the toolbar for the Waveform Editor. The Edit menu can also be opened by
right-clicking on a waveform name.

Set x1 to 0 in the time interval 0 to 100 ns, which is probably already set by default. Next, set x1 to
1 in the time interval 100 to 200 ns. Do this by pressing the mouse at the start of the interval and
dragging it to its end, which highlights the selected interval, and choosing the logic value 1 in the
toolbar. Make x2 = 1 from 50 to 100 ns and also from 150 to 200 ns, which corresponds to the truth table
in Figure 9. This should produce the image in Figure 32. Observe that the output f is displayed as having
an unknown value at this time, which is indicated by a hashed pattern; its value will be determined during
simulation. Save the file as Xorl.vwf.

ﬁ Horl.bdf } 1] Waveforml.vwi*
@ Master Time Bar: 131 ns j_'| Painter: 154.01 ns Interval: 14091 ns Start: End:

kA e | Vit 0 ps . 400 ns B0 1200ns 1600 ns 20003

131 1 s
=@ n3 -
] 0 ul 40 I |
s 1 2 a0 | 1

L) A

Figure 32. Setting of test values.

5.1 Performing the Simulation

A designed circuit can be simulated in two ways. The simplest way is to assume that logic elements
and interconnection wires in the FPGA are perfect, thus causing no delay in propagation of signals through
the circuit. This is called Functional simulation. A more complex alternative is to take all propagation
delays into account, which leads to Timing simulation. Typically, functional simulation is used to verify
the functional correctness of a circuit as it is being designed. This takes much less time, because the
simulation can be performed simply by using the logic expressions that define the circuit.

5.1.1 Functional Simulation

To perform the functional simulation select Assignments > Settings to open the Settings window,
on the left side of this window click on Simulator Settings to display the window in Figure 33, choose
Functional as the simulation mode, choose Xorl.vwf as the simulation input, and click OK. The
Quartus Il simulator takes the inputs and generates the outputs defined in the Xor.vwf file.

Settings - Xor L).’J
Cateqgory:
General
Files
Libranes Select simulation options.
Device
- Oparating 5 stings and Conditions
i Eo"mp”atin ngess Seting: Simulstion mods: |[Funetional =1
EDA Taol Settings Simulation input: [<ort.vuf J Al Ml Files
- Analysic & Synthezic Settings
=+ Fitter Seftings Simulation period
- Timing Analysis Settings ' Run simulation until all vector stimuli are used
Azzembler
Dasign Acsistart " End simulation at:

SignalTap Il Legic &nalyacr

Logic Analyzer Inteiface Glitch filterin T
= A g options: | Auto -
=+ Simulator Settiings |

PowerPlay Power Analyzer Settings Mare Settings...

D escription,
Specifies the twpe af simulation to perform for the current Simulation focus.

Figure 33. Specifying the simulation mode.

Before running the functional simulation it is necessary to create the required netlist; select
Processing > Generate Functional Simulation Netlist. A simulation run is started by Processing > Start
Simulation. At the end of the simulation, Quartus Il software indicates its Successful completion and
displays a Simulation Report illustrated in Figure 34. If your report window does not show the entire
simulation time range, click on the report window to select it and choose View > Fit in Window.
Observe that the output f is as specified in the truth table of Figure 9.

Simulation Waveforms

Simulation mode: Functional

Iy MasterTimeBar| 131ns 4|s|Pointer| 141.46ns Intevak| 128.36ns Slat: End:
A 0 ps 40.0ns 20.0ns 1200 ns 180.0 ns znuum{
Walue at _ _ _ _
5 Name | 9379 ns 137 ns
[l
& 0 w1 A0 [|
=1 ¥2 40 | T) e e R L
o2 f a0 [I T N A |
M —
*
N
=
L1
gl

Figure 34. The result of functional simulation.

5.1.2 Timing Simulation

Having ascertained that the designed circuit is functionally correct, we should now perform the
timing simulation to see how it will behave when it is actually implemented in the chosen FPGA device.
Select Assignments > Settings > Simulator Settings to get to the window in Figure 33, choose Timing as
the simulation mode, choose Xorl.vwf as the simulation input, and click OK. Run the simulator, which
should produce the waveforms in Figure 35. Observe that there is a delay of about 6 ns in producing a
change in the signal f from the time when the input signals, x1 and x2, change their values. This delay is
due to the propagation delays in the logic element and the wires in the FPGA device.

Simulation Waveforms

Simulation made: Timing

[y Master Time Bar: 131 ns 4|+ Pointer:| 97.86n: Interval 84.46ns Start: End:
A 0 ps 40.0ns 80.0ns 1200 ns 160.0 ns ZDDDn4
Value at v v i i
o Name 131 ns 131 ns
|
@\ w0 %1 AD | |
w1 %2 AD
=2 f A [I
i,
—
B
£

Figure 35. The result of timing simulation.

6- Pin Assignment

During the compilation above, the Quartus 11 Compiler was free to choose any pins on the selected
FPGA to serve as inputs and outputs. However, the DE2 board has hardwired connections between the
FPGA pins and the other components on the board. We will use two toggle switches, labeled SW10 and
SW11, to provide the external inputs, x1 and x2, to our example circuit. These switches are connected to
the FPGA pins W5 and V10, respectively. We will connect the output f to the red light-emitting diode
labeled LEDR10, which is hardwired to the FPGA pin AC13.

Pin assignments are made by using the Assignment Editor. Select Assignments > Assignment
Editor to reach the window in Figure 22.

Page 13 of 16

= A @ coteqory: |[P ~| g oA | & Timing ‘ ® Logic Options |
ERs ‘Th\s category displays all pin assignments for the target device Family. Pin assignments assign node and entities ko pins o regions on the device,
S
E Edit: ¥ S| [zzrewz>]
=]
To Location [1j0 Bank [1j0 standard | General Function | special Function [Reserved
2l |i7 = \ | \ |
il
1z
5
=
|
B
o
F
i
&
s
ws
< >

Figure 22. The Assignment Editor window.

Under Category select Pin. Double-click on the entry <<new>> which is highlighted in blue in
the column labeled To. The drop-down menu in Figure 23 will appear. Click on x1 as the first pin to be
assigned; this will enter x1 in the displayed table. Follow this by double-clicking on the box to the right of
this new x1 entry, in the column labeled Location. Now, the drop-down menu in Figure 24 appears.

To

= 1
mxl
2

Figure 23. The drop-down menu displays the input and output names.

Scroll down and select PIN_WS5. Instead of scrolling down the menu to find the desired pin, you
can just type the name of the pin (W5) in the Location box. Use the same procedure to assign input x2 to
pin V10 and output f to pin AC13, which results in the image in Figure 25.

|T0 Location |I;’O Bank 1/ Standard General Function Special Fune
1 1 PIN_5| | 33V LVTTL
2 e = PIN_WS JoBarkl Row LD ~|
PIN_We JOBarkl Row IO
PIN_W7F JOBark1l Row IO LYDS17n
PIN_WS /0 Bank 1 Row [}O LYDS17p, COPCLEL{DGQSILICRELE
PIN_wa JOBark1l Row IO LYDS18p
PIN_‘W10 1j0 Bank 1 Row [jO L¥DS18n
PIN_ w2l JOBarks Row IO LYDS177p
PIM_WZZ 1j0 Bank & Riow IfC LYDS177n
PIN_MW23 1j0 Bank & Row [jO LYDS179n
PIN_wed JOBarks Row IO LYDS179p
PIN_MW25 1j0 Bank & Row [jO LY¥DS175n
PIN_W2t oBarks Row IO
PIN_‘W27 1j0 Bank & Row [jO LY¥DS171n
PIN_WeE JOBarks Row IO LYDS171p
< PIN_‘W29 1j0 Bank & Row [jO LY¥DS5169n w

Figure 24. The available pins.

Figure 25. The complete assignment.

Page 14 of 16

o + Category: | Fin j e Al @ Timing | #* Logic Options
2 | [Assigns a location on the device For the currert nodets) andjor pin(s). -
x
A e || [2znews= |
To Lacation IjO Bank. If0 Standard General Function Special Functian Reserved

1 <1 PIN_W5S 1 3.3V LYTTL Row [/Q

2 2 PIN_Y10 1 3.3V LVTTL Row 1[0 LYDS23p

3 Lo di PIN_AC13 5 3.3V LVTTL Column IfQ

4 e < <new s>

< ks

To save the assignments made, choose File > Save. You can also simply close the Assignment
Editor window, in which case a pop-up box will ask if you want to save the changes to assignments; click
Yes. Recompile the circuit, so that it will be compiled with the correct pin assignments.

7- Programming and Configuring the FPGA Device

The FPGA device must be programmed and configured to implement the designed circuit. The
required configuration file is generated by the Quartus II Compiler’s Assembler module. Altera’s DE2
board allows the configuration to be done in two different ways, known as JTAG and AS modes. The
configuration data is transferred from the host computer (which runs the Quartus Il software) to the board
by means of a cable that connects a USB port on the host computer to the leftmost USB connector on the
board. To use this connection, it is necessary to have the USB-Blaster driver installed. Before using the
board, make sure that the USB cable is properly connected and turn on the power supply switch on the
board.

In the JTAG mode, the configuration data is loaded directly into the FPGA device. The acronym
JTAG stands for Joint Test Action Group. This group defined a simple way for testing digital circuits and
loading data into them, which became an IEEE standard. If the FPGA is configured in this manner, it will
retain its configuration as long as the power remains turned on. The configuration information is lost when
the power is turned off. The second possibility is to use the Active Serial (AS) mode. In this case, a
configuration device that includes some flash memory is used to store the configuration data. Quartus Il
software places the configuration data into the configuration device on the DE2 board. Then, this data is
loaded into the FPGA upon power-up or reconfiguration.

Thus, the FPGA need not be configured by the Quartus Il software if the power is turned off and
on. The choice between the two modes is made by the RUN/PROG switch on the DE2 board. The RUN
position selects the JTAG mode, while the PROG position selects the AS mode.

7.1 JTAG Programming

The programming and configuration task is performed as follows. Flip the RUN/PROG switch
into the RUN position. Select Tools > Programmer to reach the window in Figure 36. Here it is
necessary to specify the programming hardware and the mode that should be used. If not already chosen by
default, select JTAG in the Mode box.

¥, Quartus Il - D:falterafquartus{Exp2/Xon1 - Xor1 - [Xorl.cdf]
E File Edit “iew Project Assignments Processing Tools Window Help

D E pront xR s TG k@8 Qe

Status = 3@3 Horlw] @ Compilation ... 1 3@," Werlogz.v] @ Agsignment E... I ﬁ Horlwwf] @ Simulation A...] @
Module | Progress 7 [Time & |

Simulator) RIS | OC:00:08 ;:; Hardware Setup...| | 15B-Blaster [use-0] Mode: |JTAG ~ | Progress:

™ Enable realtime ISP ta allow backaground programming [for MA || devices)

Program/ . Blank-
Configuie Veiify Check.

Usercode

wh Start ‘ File

o sof EFZC7OFEE O0G0R1E FFFFFFFF O
’Fﬂ Auto Detect
(& Add File
(& Add Device...

Device Checksum

Figure 36. The Programmer window.

Also, if the USB-Blaster is not chosen by default, press the Hardware Setup... button and select
the USB-Blaster in the window that pops up, as shown in Figure 37.

Page 15 of 16

Hardware Setup m_|

Harcere Selbngs | 1785 Satfivgs |
Selec! & progiamming herdeee selup 10 e wien progizmming devces Thie Diooraminmng
hardvears sebup spples orly 1o e cursnl proorsmmer windas,
Comeeviy sebacied handware: | IEEREE T I ~ |
ralaile hadrears leme
Hadwars SEres! | Pt | Add Hardwars... |
L 5A-Blnser Lazal LSE-O

Figure 37. The Hardware Setup window.

In Figure 36, observe that the configuration file Xorl.sof is listed in the window. If the file is not
already listed, then click Add File and select it. This is a binary file produced by the Compiler’s Assembler
module, which contains the data needed to configure the FPGA device. The extension .sof stands for
SRAM Obiject File. Note also that the device selected is EP2C70F896C6, which is the FPGA device used
on the DE2 board. Click on the Program/Configure check box. Now, press Start button. A LED on the
board will light up when the configuration data has been downloaded successfully. If you see an error
reported by Quartus Il software indicating that programming failed, check to ensure that the board is
properly powered on.

Page 16 of 16

University of Jordan
Faculty of Engineering and Technology
Department of Computer Engineering
Digital Logic Laboratory 0907234

Labsheet 1: Introduction to Altera and Schematic Programming

Name:

Student ID:

Section:

Part 1: (In lab

You are required to build the schematic diagram for the following function:
FX,Y)=X.Y
You have to follow the instructions below:

1. Create a new project.
2. Build the schematic of the function.

Paste a snap-shot of your schematic here:

3. Compile the project.
4. Perform Functional simulation for the function.

Paste a snap-shot of vour entire simulation here:

Part 2: (In lab

You are required to build the schematic diagram for the following function:
F(A,B,C)=(A.C)+B
You have to follow the instructions below:

1. Create new project.
2. Build the schematic of the function.

Paste a snap-shot of your schematic here:

3. Compile the project.
4. Perform Timing simulation for the function.

Paste a snap-shot of vour entire simulation here:

Perform the following pin assignments then download your design on the FPGA.

A:SW [3] (Pin_AC27)
B: SW [2] (Pin_AB25)
C:SW [1] (Pin_AB26)
F: LEDR [0] (Pin_AJ6)

For the following switch combinations, determine the status of the LEDR[0] as you see it on the FPGA to

verify the correctness of your design:

SWI[3] SW[2] SW[1] LEDR[0] (On or Off)
0 0 1
0 1 1
1 0 1

Experiment 2
Introduction to Verilog Programming using Quartus II software

Prepared by: Eng. Shatha Awawdeh, Eng.Eman Abu_Zaitoun

Introduction:

Verilog HDL is a hardware description language used to design electronic systems. Verilog HDL
allows designers to design at various levels of abstraction. It is the most widely used HDL with a user
community of more than 50,000 active designers.

This tutorial shows how the Quartus Il software can be used to design and implement a circuit
specified by using the Verilog hardware description language.

Objectives:

« Creating a project using Quartus Il software.

* Design entry using Verilog code.

* Assigning the circuit inputs and outputs to specific pins on the FPGA.
* Simulating the designed circuit.

 Programming and configuring the FPGA device.

» What is Verilog?

Verilog is one of the two major Hardware Description Languages (HDL) used by hardware designers in
industry and academia. VHDL is the other one.

The Verilog language describes a digital system as a set of modules. Each of these modules has input(s)
and output(s). Usually we place one module per file but that is not a requirement.

Note: Verilog is case sensitive

The structure of a module is the following:

module <module name> (<port list>);
<declares>

<module items>
endmodule

e The <module name> is an identifier that uniquely names the module.

e The <port list> is a list of input and output ports.

e The <declares> section specifies data objects as inputs, outputs, or wires.
e The <module items> may be assignments or instances of modules.

Modules can represent pieces of hardware ranging from simple gates to complete systems. Modules
can either be specified behaviorally or structurally (or a combination of the two).

- A behavioral specification defines the behavior of a digital system (module) using traditional
programming language constructs, e. g., ifs, whiles, assignment statements.

Example:

// Behavioral Model of a Nand gate
module NAND (inl, in2, out) ;

input inl, in2;

output out;

// continuous assign statement
assign out = ~(inl & in2);
endmodule

Page 1 of 5

In the above example:
<module name>: NAND
<port list>: in1, in2, out
<Declares>: input inl, in2;
output out;
<module items>: assign out = ~(inl & in2);

Note: The continuous assignment assign continuously watches for changes to variables in its right hand
side and whenever that happened the right hand side is re-evaluated and the result immediately propagated
to the left hand side (out).

- Structural specification expresses the behavior of a digital system (module) as a hierarchical
interconnection of sub modules.

Here is a structural specification of a module AND obtained by connecting the output of one NAND to
both inputs of another one.

module AND(inl, in2, out);

// Structural model of AND gate from two NANDS
input inl, in2;

output out;

wire wl;

// two instantiations of the module NAND

NAND NAND1 (inl, in2, wl);

NAND NAND2 (wl, wl, out);

endmodule

This module has two instances of the NAND module called NAND1 and NAND2 connected together by
an internal wire wl.
The general form to invoke an instance of a module is:

<module name> <instance name> (<port list>);

» Quartus Il Introduction Using Verilog Design:

The following example makes use of the Verilog design entry method, in which the user specifies the
desired circuit in the Verilog hardware description language.

1-Getting Started:
Follow the steps in the previous experiment to create new project, and name it Xorl.

2-Using the Quartus Il Text Editor:
1-Select File > New to get the window in Figure 1, then choose Verilog HDL File and click OK. This
opens the Text Editor window in Figure 2.

New: El

Device Design Files l Other Files]

AHDL File

Block Diagram#S chematic File
EDIF File

SOPC Builder System

State Machine File

“erilog HOL File
WHDL File

Cancel
Figure (1)

Page 2 of 5

& Verilogl. v

i &
A

s

Wl | — g8
Wi ¥

Figure (2)

2- Specify the name for the file that will be created. Select File > Save As to open the pop-up box depicted
in Figure 3.

In the box labeled Save as type choose Verilog HDL File. In the box labeled File name type
Xorl. Put a checkmark in the box Add file to current project. Click Save, which puts the file into the
directory Exp2 and leads to the Text Editor window shown in Figure (4).

Save As E|
Save i |_}Exp2 j cf BE-

B
My Recent
Documents

?-_‘.

Desktop

-/

98

My Computer
M N;‘J] k | | $ |
[Metwarl File: hanne: Harl A ave
Places
Save as type: |Verilog HOL File [%" vlg* verilog) j Cancel
v &dd file to current project
Figure (3)
3£ Korl
==
dh
4 %
% %
0 o
L]
521 =
‘ —
Figure (4)

3- Enter the Verilog code as shown in Figure 5. Then save the file by choosing File > Save, or by typing
the shortcut Ctrl-s.

Page 3 of 5

E@’ Horl v

@ 1 Emodule Xorl{out,inl,in2)
2 input inl,in2:;

dh ©] 3 output out:
4 azZsign out= inl*inz;:
5 endmodule

= e °

A %

%%

[

3

fep 3t

=

Figure (5)

Using Verilog Templates

The syntax of Verilog code is sometimes difficult for a designer to remember. To help with this
issue, the Text Editor provides a collection of Verilog templates. The templates provide examples of
various types of Verilog statements, such as a module declaration, an always block, and assignment
statements. It is worthwhile to browse through the templates by selecting Edit > Insert Template >
Verilog HDL to become familiar with this resource.

3-Compiling the Designed Circuit:
Refer to Experiment 2.

Errors

Quartus Il software displays messages produced during compilation in the Messages window. If the
Verilog design file is correct, one of the messages will state that the compilation was successful and that
there are no errors.

If the Compiler does not report zero errors, then there is at least one mistake in the Verilog code. In
this case a message corresponding to each error found will be displayed in the Messages window. Double-
clicking on an error message will highlight the offending statement in the Verilog code in the Text Editor
window. Similarly, the Compiler may display some warning messages. Their details can be explored in the
same way as in the case of error messages. The user can obtain more information about a specific error or
warning message by selecting the message and pressing the F1 function key.

To see the effect of an error, open the file Xorl.v. Remove the semicolon in the assign statement,
illustrating a typographical error that is easily made. Compile the erroneous design file by clicking on the
icon. A pop-up box will ask if the changes made to the Xorl.v file should be saved; click Yes. After trying
to compile the circuit, Quartus 11 software will display a pop-up box indicating that the compilation was
not successful. Acknowledge it by clicking OK. The compilation report summary, now confirms the failed
result. Expand the Analysis & Synthesis part of the report and then select Messages to have the messages
displayed as shown in Figure 6.

® Compilation Report - Analysis & Synthesis Messages

3l Corrllation Repoet
& Legal Notice i
S Flaw sunmary I VR ‘ e
S Flow Setfings CEX Irfa Conrnzrd quarus_mzp -razd semrae fiea=on - arka_settings_fiks=aff ligre - liake
QEFbw Elap-;ed Tirre ?.; ?'lm'l'-'n'l'gl-- T m; edlngs | XDIII‘]..VI“""""”'"“':"'"” :,. mpectng o
QEI FbLlILCg _a _ v Faund U demon un | wdnig U enlbes rsoaes hie okt
3 o, Qs || Anzlysi & 3 pihacs was vnouccessil 1enon 0a=inings
-1 & 3 pralysl & =vnifEsE
S sy
+-Eh] Settings
S8 Souros Files Read
i
éd Messages |M!::ag!: [t 100 # | J
Figure 6

Double-click on the first error message. Quartus Il software responds by opening the Xorl.v file
and highlighting the statement which is affected by the error. Correct the error and recompile.

Page 4 of 5

4-Pin Assignment:
Refer to Experiment 2.

5- Simulating the Designed Circuit
Refer to Experiment 2,

6 -Programming and Configuring the FPGA Device
Refer to Experiment 2.

Note:
If you want to implement the Xor module using structural modeling do the following:

1. Write the primitive needed modules (AND, OR, INV) in a separate file name it (lib.v)

module ANDGATE (inl, in2, out);
input inl, in2;

output out;

assign out= inlé&in2;

endmodule

module ORGATE (inl, in2, out);
input inl, in2;

output out;

assign out= inl|in2;
endmodule

module INVGATE (inl, out);
input inl;

output out;

assign out= ~inl;
endmodule

2. Write Xor module in a separate file, name it (Xorl.v)

module Xorl (inl, in2, out);
input inl, in2;

output out;

wire wl,w2,w3,w4d;

~inl
~1in2

INVGATE invl (inl,wl) ; // wl
INVGATE inv2 (in2,w2) ; /] w2

ANDGATE AND1 (inl, w2, w3); // w3 = inl&(~in2)

ANDGATE AND2 (in2, wl, w4); // w4 = in2&(~inl)
ORGATE orl (w3,w4,out) ; // out = w3 | w4
endmodule

Note that the Xorl module should be the top level module, you can change top level module by choosing
project>set as top level.

If you need the file (lib.v) in another project you don’t have to create it again, just make add file in
project creation (step3) in Experiment 2.

Page 5 of 5

University of Jordan
Faculty of Engineering and Technology
Department of Computer Engineering
Digital Logic Laboratory 0907234

Labsheet 2: Introduction to Verilog Programming using Quartus II software

Name:

Student ID:

Section:

Part1: (In Lab)

You are required to use Verilog structural modeling to design function F given by the following equation:
F(x,y,z) = (x.y.2) + (x®2z)

Follow the instructions below:

=

Open Quartus Il software and create a new project.
2. Create and add a Verilog file named “lib.v” to your project.

3. In the file “lib.v”, write modules for 2-input AND gate, 2-input OR gate, and 2-input XOR gate using
behavioral modeling.

4. Create and add a Verilog file named “circuitl.v” to your project.

5. In the file “circuit1.v”, write a module named “circuit1” that implements function F using structural
modeling.

6. Set the top-level entity to be “circuitl.v” (Assignment — settings — general) or (from Files tab in
project navigator right click on “circuitl.v” file — set as top level entity).

7. Compile your project and run functional simulation that shows all possible input combinations.

8. Perform the following pin assignments then download and test your design on the FPGA:

x: SW [3] = (Pin_AC27)
y: SW [2] - (Pin_AB25)
z: SW [1] » (Pin_AB26)
F: LEDR [0] — (Pin_AJ6)

Copy vour “lib.v” code here:

Copy your “circuitl.v” code here:

Paste a snap-shot of your entire simulation here:

University of Jordan
Faculty of Engineering and Technology
Department of Computer Engineering
Digital Logic Laboratory 0907234

Labsheet 3: Basic Logic Gates Implementation Using Breadboards and Discrete Gates

Name:

Student ID:

Section:

Part 1: Check Elementary Functions:

1- Insert the Quad 2-input AND gate IC into the bread-boarding socket, connect pin 14 to
+5V and pin 7 to GND. Experimentally verify that this AND gate is working properly by

determining its truth table.

Input Output
i1 i2 F
0 0
0 1
1 0
1 1

2- Can a NOR gate be used as an inverter? How?

3- Can a NAND gate be used as a buffer? How?

(In Lab)

Part 2: Simple Design:

1- Build function F circuit on your breadboard and construct the truth table based on the

logic outputs for every possible input:

F=(XY).(X +Y)

Input Output
X F
0
0
1
1

2- Which gate function does F represent?

(In lab)

Use the following table when needed.

Gate

IC Code

Pin Configuration

Hex-Inverter

74LS04

O] O3] [Fe] [] [30] 5] =]

WEC

Quad 2-input AND gate

74LS08

Quad 2-input NAND gate

74LS00

Quad 2-input NOR gate

74LS02

Quad 2-input OR gate

74LS32

Experiment 3
Basic Logic Gates Implementation Using Breadboards and Discrete Gates

Introduction:

Logic functions can be implemented in several ways. In the past, vacuum tube and relay circuits
performed logic functions. Presently logic functions are performed by tiny integrated circuits (ICs).
These ICs are small silicon semiconductors sheets called chips, containing the electronic
components for the logic gates. The chip is mounted in a plastic container, and connections are
welded to external pins may range from 14 in a small IC package to 64 or more in a large one.

Objectives:

e Understand how to use the breadboard to patch up, test your logic design and debug it.

e Wire and operate logic gates such as AND, OR, NOT, NAND, NOR, XOR.

e Understand how to implement simple circuits based on a schematic diagram using logic gates.

Theoretical Background:

Types of integrated circuits (ICs)
The different sizes of integration of IC chips are usually defined in terms of the number of logic
gates in a single IC or package. They are classified in one of the following categories:
1. Small-scale integration (SSI) device: contains less than 10 gates in a single package, such as
logic gates.
2. Medium scale integration (MSI) device: contains 10 -100 gates in a single package, such as
adders and decoders.
3. Large-scale integration (LSI) device: contains 100 to 10000 gates in a single package, such
as processors.
4. Very large-scale integration (VLSI) device: contains more than 10000 gates in a single
package, such as complex microprocessors chips.

Logic Families
The types of logic devices are classified in "families", of which the most important are TTL and
CMOS. The main families are:

e TTL (Transistor-Transistor Logic) made of bipolar transistors.

e CMOS (Complementary Metal Oxide Semiconductor) made from MOSFETs
e ECL (Emitter Coupled Logic) for extremely high speeds

e« NMOS, PMOS for VLSI large scale integrated circuits.

Subfamilies of TTL Family

There are subfamilies or series of the TTL. Commercial TTL ICs has a number designation that
starts with 74 and follows with a suffix that identifies the series type. These subfamilies are:
Standard: 74xx, High speed 74hxx, low power 74Lxx, Shottky TTL 74Sxx, Low power shottky
74LSxx, Advanced shottky 74ASxx, Advanced low-power shottky 74 ALSxx.

AIl TTL IC’s are designed to operate from 5V power supply. The input and output logic levels are
illustrated in the Figure 1.

OUTPUT INPUT
— 5.0 —

HIGH ~ HIGH
4.0 —

> Figure 1

— 2.0

1.0

— 0.0 —
Volts

CPE 0907234 Digital logic lab
Prepared by: Eng. Ala'a Arabiyat
Eng.Shatha awawdeh
Page 1 of 4

Some characteristics of the TTL family

l.

Power dissipation: It is the amount of power needed by the gate delivered from the power
supply. It is equal to 20 mw per gate. Power dissipation is useful to estimate the total power
consumption of a system, as an example it will help in portable equipment to know what
type of battery might be needed.

Fan-in: it is the number of inputs that the gate is designed to have, the maximum inputs is 8
inputs per gate.

Fan-out: it is the maximum number of inputs that can be connected to the output of the gate
without affecting its normal operation. It is 12 gates.

Propagation/time delay: it is the amount of delay between applying the input and the
response of the output of the gate. Generally, the propagation delay is in the range of 0.5 to
50 nanoseconds. The total propagation delay time of a logic system will be the delay gate
multiplied by the number of gates in series. It is 10 ns per gate.

Practical TTL Logic Gates

A popular type of IC is illustrated in Figure 2. IC manufacturers refer to this case style as a dual-in-
line package (DIP).This particular IC is called a 14-pin DIP IC. Just counterclockwise from the
notch on the IC is pin 1. A dot (optional) on the top of the IC is another method used to locate pin 1.

SN74LS08J Y
IJEIIE][EFIFI
[T [
Y) 7408
[21 [

UTIIWET

Notch

Pin1

Figure 2

Part Number:
Part number is divided into three sections:

The prefix: the manufacturer's code.

Core part number: This determines the technology "TTL or CMOS", the device series and
the function of a digital IC.

The trailing letter(s) "the suffix" which is a code used by several manufacturers to design the
DIP.

For example, the part number of:

SN74LS08J

SN: stands for the manufacturer "Texas Instruments"
74: 7400 TTL series

LS: low shottky type

08: function of a digital IC

J: Ceramic dual-in-line Package

CPE 0907234 Digital logic lab
Prepared by: Eng. Ala'a Arabiyat

Eng.Shatha awawdeh
Page 2 of 4

Waleed Dweik

Waleed Dweik

Breadboard

A breadboard is used to build and test circuits quickly before finalizing any circuit design. The
breadboard has series of holes into which ICs can be inserted.
Breadboard Construction:

>
>

>

The breadboard has a series of holes, each containing an electrical contact.

Holes in the same row (examples highlighted in yellow (1) in Figure3) are electrically
connected(they are the same node),holes in other row (highlighted in green (2)) are
different node, when you insert a wire into one hole then all the holes in the same node
are electrically connected.

The gap (highlighted in pink (3)) marks a boundary between the electrical connections.
A wire inserted in one of the green holes would not be connected to a wire inserted in
one of the yellow holes.

The two top rows of holes at the top highlighted in red and blue are used for power
supply connections. The first row (highlighted in blue (4)) is connected to ground, all the
holes in this row are electrically connected.

The second row (highlighted in red (5)) must connected to 5V , there are 40 holes in
this row, each 10 holes are grouped together and electrically connected.

e Using a Breadboard

1. Before building a circuit, connect 5V from the power supply to V1 (or V2 or V3) in the
bread board and OV the ground of the bread board as shown in the figure below.

O,
|

DOO00000000000000000000/0
DO00000000000000000000007¢

200000000000000000000000
200000000000000000000000
200000000000000000000000
J00000000000000000000000
200000000000000000000000

00000
00000
00000
cooo0o00
0000

coooh
- 2-1-]

0000

0000

0000¢&
00000
00000
00000
cooo0co0o0
00000
00000
0000
- A-2-1-
00000
00000
o0oo0o00
ocococoo

Figure 3

CPE 0907234 Digital logic lab
Prepared by: Eng. Ala'a Arabiyat

Eng.Shatha awawdeh
Page 3 of 4

Waleed Dweik

Waleed Dweik

1. Use wires to connect V1 in the bread board to the red terminal(+), and ground of the
bread board to the blue terminal(-).

2. Place the IC in the board so that pin 1 should be on the upper left of the board. Half of
the legs should be on one side of the pink gap and half on the other.

3. Connect pin 14 of the IC chip to V. and pin 7 to ground.

4. Connect pin 1 and 2 of the IC chip to the input (you can take the input from the two top
rows that are connected to the power supply, holes in the first row for logic 0 and holes
in the second row for logic 1.

oo
oo
oo
oo
-1
oo
00000 00000
00000 - 1-1-1-1-]
00000 00000
00000 00000
00000 ooo000
00000 ©co0co000
00000 00000
00000 00000
00000 00000
00000 - L-1-1-1-]
00000 00000
00000 00000
00000 o0o000
00000 00000
00000 00000
00000 00000
00000 - L-1-1-1-]
anannn anannn
Figure 4

5. You can determine the output using the logic probe, logic probe as shown in (Figure5)
is a hand-held pen-like probe used for analyzing and troubleshooting the logical states
(Boolean 0 or 1) of a digital circuit. It can be used on either TTL or CMOS integrated
circuit devices.

a. Attach red alligator clip to positive side of the power supply.

b. Attach black alligator clip to a negative side of the power supply.

c. Place the tip of the probe on the point you want to test. Make sure that the switch
is in TTL position.

Figure 5
Wiring Guidelines:
e Arrange the IC chips on the breadboard so that only short wire connections are needed.
e Try to keep the wire as short as possible to avoid a jungle of wires.

e Try to maintain a low wiring profile so that the pins of the chips can be reached and the chip
replaced, if necessary. The best connections are those that lie flat on the board.

Pay extra attention to power and ground. If you find your chips are getting super hot then
there is probably a short circuit. Turn off power immediately and wire them correctly.

CPE 0907234 Digital logic lab
Prepared by: Eng. Ala‘a Arabiyat
Eng.Shatha awawdeh
Page 4 of 4

http://en.wikipedia.org/wiki/Boolean
http://en.wikipedia.org/wiki/TTL
http://en.wikipedia.org/wiki/CMOS

Experiment 4
Decoder/Encoder Implementation

Introduction:

Data communications between digital systems or computers are usually transmitted in some
form of a code. A circuit that will convert a digital input into some form of a binary code is
called an Encoder. A digital circuit that converts a binary code into a recognizable number or
character is called a Decoder.

Objectives:

e Design, build, and test a variety of Decoders, Encoders.

e Demonstrate the operations and applications of Decoders, Encoders.
e Implement logic functions using Decoders.

Decoder:
A Decoder is a combinational circuit that converts binary information from n input lines to a
maximum of 2" unique output lines.
e A decoder has n inputs and m outputs, where m < 27", and is called n-to-m-line
decoder .
e each output represent one of the minterms of the n input variables for Active-
high decoders, and represent one of the maxterms for active-low decoders .

The Figure below represents the block diagram and a truth table for a 2-line-to-4-line (or 2 x
4) decoder that has active-HIGH inputs and outputs.

Inputs Outputs
— DO A| B |DO|DL|D2|D3
(MSB) A 2x4 [—DI ofol1fo]o]o
B Decoder | 1y ol1lol1lollo
— D3 1{ojofof1|o
1 1 oO]1]0 |0 1
2 X 4 decoder with active-HIGH inputs and outputs

Figure(1)
Logic Diagram of 2 x 4 decoder with active-HIGH inputs and outputs:

B

Do

D1

o
s

D2

D3

VY PY

Figure(2)
CPE 0907234 Digital logic lab

Prepared by: Eng. Shatha Awawdeh, Eng. Eman Abu_Zaitoun, Eng. Alaa Arabiyat
Page 1 of 6

Some decoders,have active-LOW outputs. Figure below shows a block diagram
and a truth table for a 2 x 4 decoder with active-LOW outputs.

Inputs Outputs
Oo— DO A | B |Do|[D1|D2|D3
(MSB)A— 2x4 O— D1 ololo 1|1]1
B —| Decoder 1o 0 1 1 0 1 1
o— D3 1lol1|1]o|1
1 1 1 1 1 0
Figure(3)
Logic Diagram of 2 x 4decoder with active-LOW outputs:
B Do
Bat
Bat
A Do
-
D

Figure(4)

» Function Implementation using Decoder

As we mention above the outputs of the decoder correspond to minterms for the active
high decoder. For example,DO =m0 = A" B *, a combinational logic function that is
expressed as a sum of minterms, therefore, can be implemented by summing decoder
outputs. For example, if f(A,B) =X(0, 2, 3) then f (A,B)= D0 + D2 + D3 so f can be
implemented by the circuit shown in Figure below:

DI
MSB)A— 2x4 |— ,
B —| Decoder |D2 [3 > fA-B)
D3
Figure(5)

» The Enable Input

Enable is an important input to the decoder chip. If the decoder enable signal is active
high, then the decoder is active (enabled) when enable is 1 and not active (disabled) when
enable = 0.

For an active high decoder that is enabled high we have the following:

CPE 0907234 Digital logic lab
Prepared by: Eng. Shatha Awawdeh, Eng. Eman Abu_Zaitoun, Eng. Alaa Arabiyat
Page 2 of 6

Enable =0 All outputs of the decoder are 0
Enable=1 The selected output of the decoder is 1, all other outputs are 0.

Yo
Xl Enable X; Xp Yo Y1 Y Y3
2to-d Y 0 d d] 0 0 0 0
- Decoder Y, 1 0 0 1 0 0 0
— . 1 0 1[0 1 0 0
— 1 1 o|lo0 0 1 0
Enable 1 1 1|0 0 0 1
1
Figure(6)

If the decoder enable signal is active low, then the decoder is active (enabled) when
enable is 0 and not active (disabled) when enable = 1.

» Decoder Expansion

It is possible to combine two or more decoders with enable inputs to form a larger
decoder .

The enable inputs are a convenient feature for decoder expansion .

A 3 X 8 decoder constructed with two 2 X 4 decoders.

2x4

decoder | Dy

Ag 20 e D[

'd‘l 2] Epp— D:;

A] — E R Dﬁ
2x4

decoder [Dy

— 20 — D

21 —— Dy

E — D1

Figure(7)

CPE 0907234 Digital logic lab
Prepared by: Eng. Shatha Awawdeh, Eng. Eman Abu_Zaitoun, Eng. Alaa Arabiyat
Page 3 of 6

Encoder:

n
An encoder is a digital circuit that performs the inverse of a decoder, the encoder has 2 (or
less) input lines and n output lines ,the output lines generate the binary code
corresponding to the input value .
Example : design 8-3 encoder.

Inputs Outputs At any one time, only one
[0 T1 12 I3 14 15 16 17| YaYy Y, input line has a value of 1.
1 0 0 0 0 0o 0 0 0 00
O 1 0 O 0 0 0 0 0 01 YO=MM+I13+15+I7
o 0o 1 0o 0 O 0 0 0-1 0
00 01000 0011 Y1=12+13+16 +17
00 0 0 1 0 0 01100 Y2=14+I15+16 +I7
0 0 0 o 0 1 0 0 1 01
O 0 0 0 0 0 1 0 1 10
0. 0.0 0.0 0 0 1 11 1

Iy, ——

L —Dﬁ Yy=L+L+L+I

I. —

2 —| II T

I3 » ._“Di }.1:1:+13+I|5+I?

I

I-_: >

I —

I'.' :I r Yrﬂ:]:1+13+15+11

Figure(8)

If we look carefully at the Encoder circuits that we got, we see that if more then two inputs
are active simultaneously, the output is unpredictable or it is not what we expect it to be. This
ambiguity is resolved if priority is established so that only one input is encoded, no matter
how many inputs are active at a given point of time.

» Priority Encoder :
With a priority encoder, we may have more than one input with a value of 1. How do we
can decide which input subscript to encode by assign a priority to each of the subscripts.

There are two common ways to do come up with a priority scheme:

o Larger subscripts have higher priorities. Thus, 0 has the lowest priority, and 7 has the
highest.

o Smaller subscripts have higher priorities. Thus, 7 has the lowest priority, and 0 has
the highest.

For now, let's assume that larger subscripts have higher priorities,then the following table
represent 8-3 high priority encoder:

CPE 0907234 Digital logic lab
Prepared by: Eng. Shatha Awawdeh, Eng. Eman Abu_Zaitoun, Eng. Alaa Arabiyat
Page 4 of 6

Inputs QOutputs

[0 Tl T2 I3 T4 15 16 17 YaY Y,

s B T R T]
i I R]
o O W M W M O
i R N I
Do D O WO
DO D D D o W D
il N R B B e B S R
oo oo oo o
D O O
—
=l e = s

So:

Yo=li+lslg + 1515 lg + 11017 14 1g
Yj_ = |7 + |6 + |3 |4\ |5\ + |2 |4\ |5‘

Y2:|7+|6+|5+|4

e The All-Zero Case

What do we do if all the inputs are 0? We might encode 000 as output, but that creates a
problem. In particular, we can't distinguish between all O's as inputs and having 10 =1.
One way to solve this problem is to create a status bit(valid bit (\)). This bit is an output.
We could say that this bit is 1 if the input is valid, and 0 if not. Thus, this bit is only 0
when all inputs are 0.

So | can write the equation of V as: V=Ilgt+l+1lo+I3+14+1s+16+];

Other hardware devices could look at the status bit to determine whether a proper
encoding was performed.

CPE 0907234 Digital logic lab
Prepared by: Eng. Shatha Awawdeh, Eng. Eman Abu_Zaitoun, Eng. Alaa Arabiyat
Page 5 of 6

Segment Display:

The 7-segment display consist in small bars (the segments) that, set in the way indicated in

Figure below, with standard letters a through g; enable the representation of the ten decimal
numbers (0-9) and some other characters.

Figure(9)

Electrically the LEDs behave like standard diodes at solid state, with the only difference that
there is a higher voltage between anode and cathode, in case of direct polarization.
There are two main types of 7-segment displays (As shown in Figure below):

1-with common cathode, driven with positive logic.

2-with common anode, driven with negative logic.

N 7, o T H\f
e - o

b — | | common b — — | | common
% 7LA7 anode E | H\J - cathode
—p— b |
T =

Figure(10)
The 7-segment display device requires seven separate inputs. To use this display device, the
binary code called Binary Coded Decimal (BCD) is converted to 7-segment code and
supplied to the input of the display device. The circuit that performs the conversion is called a
BCD to 7-segment decoder/driver (As shown in Figure below).The LT input used to test
that all segments working.

DECODER __
DRIVER |
—{ IH.ID £ j—[
| 1 fr—
—| B & [r———
—{ A a4 p——
¢ [—
S ——
LT bp
a p—————

TALSI4T

Figure(11)

CPE 0907234 Digital logic lab
Prepared by: Eng. Shatha Awawdeh, Eng. Eman Abu_Zaitoun, Eng. Alaa Arabiyat
Page 6 of 6

University of Jordan
Faculty of Engineering and Technology
Department of Computer Engineering
Digital Logic Laboratory 0907234

Labsheet4: Decoder and Encoder Simulation

Name:

Student ID:

Section:

Problem Description:

You are requested to design a system that monitors 7 digital devices in your home. Each of these devices
continuously sends a signal to the system to report its status. The device sends logic '0" if it is working
properly; otherwise, the device sends logic '1' to indicate that it is not working and needs to be fixed.
The monitoring system uses two seven segment displays to show the status of these devices and the
number of the faulty device, if any, as shown in Figure 1.

Encoder 7-segdriver_1 7-seg display
1 — DO a a
Device 1 —{ D1 b
Device 2 — D2 A2 A c f I g Ib The number of the highest
Device 3 —4 D3 A1 B d priority faulty device
Device 4 — D4 A0 p e (-l lt-
Device 5 —4 D5 f
Device 6 — D6 B .
Device 7 —3 D7
Device # Device #
7-seg driver_2 7-seg display
a 1
H: No faulty device
b (b P: There is a problem in
LA c I 2 I one or more devices
B d

Status Status

Figure 1: Monitoring System Block Diagram
The system operates as follows:

1. The signals received from the devices are connected to an 8-to-3 high priority encoder that
outputs the number of the faulty device with the highest priority in binary format. For example,
the encoder outputs '110" when Device 6 is the only faulty one. In case there is more than one
faulty device, the encoder outputs the highest faulty device number. For instance, if devices 5
and 2 are faulty, the encoder outputs '101'. In case none of the devices is faulty, the encoder
outputs '000'.

2. The output of the encoder is connected to a 7-segment driver/decoder labeled "Device #" that
converts the device number into the corresponding 7-segment code. The output of this driver is
connected to the 7-segment display labeled "Device#" to show the faulty device number, if any.
The "Device#" 7-segment display is turned off when none of the devices is faulty.

3. The output of the encoder is also connected to another 7-segment driver/decoder labeled
"Status"” which in turn is connected to a 7-segment display labeled "Status" which displays the
overall status of the system. When there are no faulty devices, the "Status" 7-segment displays
the letter "H" (i.e. the system is healthy). On the other hand, the letter "P" is displayed to indicate
there is a problem in the system when there is at least one faulty device.

In order to implement the system, it is required first to implement the encoder and the 7-segment

drivers/decoders in Verilog behaviorally. Second, the three components are combined structurally
in the top-level module.

Partl: 8-to-3 High Priority Encoder:

a) Fill the 8-to-3 high priority encoder truth table: (Pre-Lab)

Inputs Outputs Output value in

decimal (A2 is

D7 D6 D5 D4 D3 D2 D1 DO A2 Al A0 MSB)

b) Write the Boolean equations of outputs A2, A1 and AO: (Pre-Lab)
A2 =
Al =
A0 =

c) Write the Verilog behavioral implementation of the 8-to-3 high priority encoder in the
"encoder.v" file. This module should have eight inputs (i.e. D7-D0) and three outputs (A2-A0):

Paste your “encoder.v” code here:

d) Set"encoder.v" as top-level entity and perform functional simulation of the 8-to-3 high priority
encoder. The simulation report should show the eight input combinations given in the above
truth table and the outputs should be combined together with A2 as the MSB and format is
decimal.

Paste a snapshot of your “encoder.v” simulation report here:

Part2: "Device #" 7-segment Driver/Decoder:

a) Read the 7-segment display appendix at the end of the labsheet.

b) Fill the truth table for the "Device #" 7-segment driver/decoder given in Figure 1 assuming

common-anode 7-segment display:

Inputs Outputs

B a b C d e

Output value in
hexadecimal (a
is MSB)

[B B N T = T = T = T e
= OO O QO
= O (= OO (= O O

c) Write the Boolean equations of outputs a, b, ¢, d, e, f, and g:

d) Write the Verilog behavioral implementation of the "Device#" 7-segment driver/decoder in
the "segdriver device.v" file. This module should have three inputs (i.e. A, B and C; where A is
the MSB) and seven outputs (i.e. a, b, ¢, d, e, f, and g).

Paste your “segdriver_device.v” code here:

e) Set"segdriver device.v" as top-level entity and perform functional simulation of the "Device#"
7-segment driver/decoder. The simulation report should include all input combinations and

the outputs should be combined together with "a" as the MSB and format is hexadecimal.

Paste a snapshot of your “segdriver_device.v” simulation report here:

Part3: "Status #" 7-segment Driver/Decoder:

a) Fill the truth table for the "Status" 7-segment driver/decoder given in Figure 1 assuming
common-anode 7-segment display:

Inputs Outputs Output value in
B hexadecimal (a
is MSB)

a b c d e f g

== (= o|lo|lo|e] =
= o|om| =l
o m|om|olm|e] a

b) Write the Boolean equations of outputs a, b, ¢, d, e, f, and g:

c) Write the Verilog behavioral implementation of the "Status" 7-segment driver/decoder in the
"segdriver status.v" file. This module should have three inputs (i.e. A, B and C; where A is the
MSB) and seven outputs (i.e. a, b, ¢, d, e, f, and g).

Paste your “segdriver_status.v” code here:

d) Set "segdriver status.v" as top-level entity and perform functional simulation of the "Status"
7-segment driver/decoder. The simulation report should include all input combinations and
the outputs should be combined together with "a" as the MSB and format is hexadecimal.

Paste a snapshot of your “segdriver_status.v” simulation report here:

Part4: Monitoring System:

a) Write the Verilog structural implementation of the overall system shown in Figure 1 in the
"circuitl.v" file. This module should have eight inputs (i.e. D7-D0) and 14 outputs (i.e. "a, b, ¢, d,
e, f,and g" for the "Device#" 7- segment driver and "al, b1, c1,d1, el, f1, and g1" for the "Status"
7-segment driver).

Paste your “circuit1.v” code here:

b) Set "circuitl.v" as top-level entity and perform functional simulation of the full system. The
simulation report should contain the same eight input combinations in the truth table of the 8-
to-3 high priority encoder. The outputs "a, b, ¢, d, e, f, and g" should be combined together with
"a" as the MSB and format is hexadecimal. Similarly, the outputs "al, b1, c1,d1, el, f1, and g1"
should be combined together with "al" as the MSB and format is hexadecimal.

Paste a snapshot of your “circuitl.v” simulation report here:

c) Setthe following pin assignment to the inputs and outputs in the "circuitl.v" file, download your
design on the FPGA, and fill the following table:

Input Switches Device# 7-seg Display Status 7-seg Display
D1 | iSWJ[0] | PIN_AA23 a | oHEX0_D[0] | PIN_AES8 al | oHEX1_D[O] | PIN_AG13
D2 | iSWJ1] | PIN_AB26 b | oHEX0_D[1] | PIN_AF9 bl | oHEX1_D[1] | PIN_AE16
D3 | iSWJ[2] | PIN_AB25 c | oHEX0_D[2] | PIN_AH9 cl | oHEX1_D[2] | PIN_AF16
D4 | iSW[3] | PIN_AC27 d | oHEX0_D[3] | PIN_AD10 dl | oHEX1 D[3] | PIN_AG16
D5 | iSW[4] | PIN_AC26 e | oHEX0_D[4] | PIN_AF10 el | oHEX1 D[4] | PIN_AE17
D6 | iSWJ[5] | PIN_AC24 f | oHEX0_D[5] | PIN_AD11 f1 oHEX1 _D[5] | PIN_AF17
D7 | iSWJ[6] | PIN_AC23 g | oHEX0_D[6] | PIN_AD12 gl | oHEX1 DJ[6] | PIN_AD17
SWI[6] | SW[5] | SW[4] | SW[3] | SW[2] | SW[1] | SW[O0] | oHEXO oHEX1

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 1 1

Paste a snapshot of your Pin Assignment Editor window:

Appendix: 7-Segment Display

The 7-segment display consists of seven LEDs arranged as shown in Figure 2. The LEDs are indicated
by the letters a, b, ¢, d, e, f, and g. Each LED behaves like a diode with the following two connection types:

a
f b
| |
e ,c
d

Figure 2: 7-segment Display

1. Common cathode: LEDs illuminate when positive logic is applied
2. Common anode: LEDs illuminate when negative logic is applied

By controlling the illumination of the seven LEDs, the 7-segment can display all decimal digits as
follows:

a a a a a a
TN | e T SR N S|

2 a
A
| |b Ib Ib |b;| |b:—| |b:—| |b:-| Ib
'Ial

AR

[I{: EI I{: I{: I{:EI I{: I{: EI I{: I{:
o o o o o
Lot =

Figure 3: Displaying Decimal Digits on 7-segment Display

The 7-segment display requires a special decoder device called the 7-segment driver. As shown in the
figure below, the input of the 7-segment driver is a 4-bit binary number that specifies which
decimal/hexadecimal digit to display. The 7-segment driver produces seven 1-bit outputs that control
the illumination of the seven LEDs in the 7- segment display.

. 7-seg display
7-seg driver

a a

b
A c f| Ih
B d E
.
D f

o a

Figure 4: Connecting 7-segment Driver to 7-segment Display

Experiment 5
Multiplexers Design and Implementation

Introduction:

A multiplexer (or data selector) is a device that is capable of taking two or more data lines
and converting them into a single data line for transmission to another point.

A multiplexer (MUX) performs the function of selecting the input on any one of 'n' input
lines and feeding this input to one output line. Multiplexers are used as one method of
reducing the number of integrated circuit packages required by a particular circuit design.
This in turn reduces the cost of the system.

Objectives:

e Design, build, and test Multiplexers.

e Demonstrate the operations and applications of Multiplexers.
e Implement logic functions using Multiplexers.

e Use Tri-State Buffers to implement a Multiplexer.

Multiplexer

» A multiplexer is a combinational circuit that selects binary information from one of
many input lines and directs it to a single output lines.

» The selection of particular input line is controlled by a set of selection lines.

« Normally, there are (2)" input line and n selection lines whose combinations
determine which input is selected.

« A 2-to-1 line multiplexer connects one of two 1-bit sources to a common destination
as shown in figure below.

(a) Block Diagram

I D_

1 } (h} Logic Diagram
S E

Figure(1)

CPE 0907234 Digital logic lab
Prepared by: Eng. Shatha Awawdeh, Eng. Eman Abu_Zaitoun
Page 1 of 4

Truth Table of 2-1 mux:

input Output
S 10 11
0 0 X 0
0 1 X 1
1 X 0 0
1 X 1 1

» The circuit has two data input lines, and one selection line S.

» When S=0, the upper AND gate is enabled and the 10 has a path to the output
* When S=1, the lower AND gate is enabled and I1 has path to the output.
« The multiplexer acts like an electric switch that selects one of two sources.

+ A 4-to-1 line multiplexer is shown below

I Y
i LO— Lo~
I I [
. D
Bk

s -
Sg

Figure(2)

« Each of the four inputs, lo through I3, is applied to one input of an AND gate.
» Selection lines S;and Sy are decoded to select a particular AND gate

« The output of AND gates are applied to a single OR gate that provides the 1-line

output.

DeMultiplexers:

A Demultiplexer is a Combinational logic circuit that receives binary information from a
single input and directs this information to one of many outputs. The selection is done by a
binary value present at the select inputs. (As shown in fig 3)

DERMITE
En

— 0o

— 01

[
S
Fig

3

CPE 0907234 Digital logic lab
Prepared by: Eng. Shatha Awawdeh, Eng. Eman Abu_Zaitoun

Input Output

I E S 00 |01
X 0 X X X
0 1 0 0 X
1 1 0 1 X
0 1 1 X 0
1 1 1 X 1

Page 2 of 4

=P
= e,

|

s

Figure(4):Demultiplixer

Tri-state buffer

A tri-state buffer is a digital device that is capable of three different outputs, high, low and
disconnected (high impedenace).

Here's two diagrams of the tri-state buffer.

c C
X Out X Out
tri-state buffer with tri-state buffer with
active high control active low control
Figure(4)

A tri-state buffer has two inputs: a data input x and a control input c. The control input acts
like a valve. When the control input is active, the output is the input. That is, it behaves just
like a normal buffer. When the control input is not active no electrical current flows
through,so the tri state buffer is in high impedance state (Z) ,Thus, even if x is 0 or 1, that
value does not flow through.

Here's a truth table describing the behavior of a active-high tri-state buffer.

¢ X | Out
0.0 7 c | Out
e > 0z
1,00 1x
1/1 1

Active-low tri-state buffers

Some tri-state buffers are active low. In an active-low tri-state buffer, ¢ = 0 turns open the
valve, while ¢ = 1 turns it off. Here's the condensed truth table for an active-low tri-state
buffer.

c | Out
0 | x
1 Z

CPE 0907234 Digital logic lab
Prepared by: Eng. Shatha Awawdeh, Eng. Eman Abu_Zaitoun
Page 3 of 4

Implementing 2-to-1 Multiplexe using Tristate buffer:
Given below is the circuit diagram of a 2 to 1 MUX implemented by a tristate buffer.

a

b

select

———— output

P
A,

2to 1 MUK using s Tri State Buffers

CPE 0907234 Digital logic lab

Prepared by: Eng. Shatha Awawdeh, Eng. Eman Abu_Zaitoun

Page 4 of 4

University of Jordan
Faculty of Engineering and Technology
Department of Computer Engineering
Digital Logic Laboratory 0907234

Labsheet5: Multiplexer and Demultiplexer Simulation

Name:

Student ID:

Section:

Problem Description:

In this experiment, you will design the two-bit time-division multiplexing (TDM) communication circuit
shown in Figure 1. On the sender side, a 2-to-1 dual multiplexer is used to determine which transmitter
(Tx0 or Tx1) is allowed to send data. On the receiver side, a 1-to-2 dual demultiplexer is used to
determine which port (X or Y) is used to receive data. Two 7- segment displays are connected to the
receivers to display the value received (in decimal) if the receiver is selected. If the receiver is not
selected, the (-) sign should be displayed on its 7-segment display. Notice that port X is connected to
receiver(7-segment display and portY is connected to receiverl 7-segment display.

7-seg Driver receiver(
Tx00 —J AD outd In0 X0 C a a
I'x0 B
[Txl]l Al outl Inil X1 ? fI . [b
2-to-1 Y0 d
Tx10 BO 1-to-2 e
m I:T"“ 1 DUALMUX DUALDMUX " f I
g a
S s
L 7-seg Driver receiverl
SS e a a
RS —{ B b
A ['[£ "'
d —
e " €
¢ |
g i

Figure 1: 2-bit TDM Communication Circuit

The experiment is divided into four parts: 2-to-1 dual multiplexer implementation, 1-to-2 dual
demultiplexer implementation, 7-segment driver implementation, and top-level entity.

Partl: 2-to-1 Dual MUX

a) Fill-in the truth table for the 2-to-1 MUX shown in Figure 2. (Pre-Lab)
Inputs Outputs
S 1 10 out 10 2-to-1 out
11 MuUX
S
Figure 2: 2-to-1 MUX
b) Write the Boolean equation of output “out”: (Pre-Lab)

out =

c) Implement the 2-to-1 MUX using structural Verilog code in a module named “mux1” inside the
“mux1.v” file. This module has three inputs (i.e. S, I1, and 10) and one output (i.e. out). Use the
gates given in the given “lib.v” file.

Paste your “mux1.v” code here:

d) Implement the 2-to-1 Dual MUX using structural Verilog code in a module named “dualmux”
inside the “dualmux.v” file by instantiating two instances of module “mux1” connected as shown
in Figure 3. This module has five inputs (A1, A0, B1, BO, and S) and two outputs (outl, out0).

AQ e |0 2-to-1 out
BO =11 MuUX

S

out0

A0 O T

Al QU] frmme
2-to-1 d
BO S

g1 DUALMUX

|

5

Figure 3: 2-to-1 Dual MUX

Paste your “dualmux.v” code here:

Part2: 1-to-2 Dual DMUX

a) Fill-in the truth table for the 1-to-2 DMUX shown in Figure 4. (Pre-Lab)

Inputs Outputs
S D X Y —

1-to-2
DMUX

S

Figure 4: 1-to-2 DMUX

b) Write the Boolean equations of outputs X and Y: (Pre-Lab)

c) Implement the 1-to-2 DMUX using structural Verilog code in a module named “dmux1” inside
the “dmux1.v” file. This module has two inputs (i.e. S and D) and two outputs (i.e. X and Y). Use
the gates given in the “lib.v” file.

Paste your “dmux1.v” code here:

d) Implement the 1-to-2 Dual DMUX using structural Verilog code in a module named “dualdmux”
inside the “dualdmux.v” file by instantiating two instances of module “dmux1” connected as
shown in Figure 5. This module has three inputs (In1, In0, and S) and four outputs (Y1, YO, X1,

and XO0).
X X0
P 12
DMUX — Y0
In0 X0
Inl X1 S
vo }— |d s 1
1-to-2 vil—
DUAL DMUX
_— X p—x1
S Inl D 1-to-2 .
DMUX — Y1

Figure 5: 1-to-2 Dual DMUX

Paste your “dualdmux.v” code here:

Part3: 7-segment Driver/Decoder

The 7-segment driver in the TDM circuit has three inputs: A, B, and C. Input “A” represents a control
signal which identifies whether the receiver represented by the corresponding display is selected to
receive data or not.

If A=0, then regardless of the values of B and C, a dash symbol (-) should be displayed to indicate
that this receiver is not receiving data. (Dash symbol can be generated by making segment "g"
ON and turning off all the remaining segments)

If A=1, then the decimal value corresponding to the received bits (B and C) should be displayed.

According to the above specification, fill-in the truth table for the 7-segment driver assuming
common-anode 7-segment display:

Inputs Outputs Output value in
A B C a b c d e f g hexailgl(‘e/[csigl)al (a
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

b) Write the Boolean equations of outputs a, b, ¢, d, e, f, and g:

c) Implement the 7-segment driver using behavioral Verilog code in a module named “segdriver”
inside the “segdriver.v” file. This module has three inputs (i.e. A, B and C; where A is the MSB)
and seven outputs (i.e. a, b, ¢, d, e, f, and g).

Paste your “segdriver.v” code here:

Part4: TDM Communication Circuit

a) Implement the TDM circuit shown in Figure 1 using structural Verilog code in a module named
“circuitl” inside the “circuitl.v” file. This module has six inputs (i.e. Tx01, Tx00, Tx11, Tx10, SS,
and RS) and 14 outputs (i.e. “a, b, ¢, d, e, f, and g” for “receiver0” 7-segment display and “al, b1,
cl,d1,el, f1,and gl” for “receiverl” 7-segment display).

Paste your “circuit1.v” code here:

b) Set “circuitl.v” as top-level entity and assign the following pins to the inputs and outputs in the

"circuitl.v" file, download your design on the FPGA, and test it:

Input Switches

Receiver(7-seg Display

Receiverl 7-seg Display

Tx00 [iSW[1] [PIN_AB26 a | oHEX3.D[0] | PIN_P6 al | oHEX4_D[0] | PIN_P1
Tx01 | iSW[2] | PIN_AB25 b | oHEX3.D[1] | PIN_P4 bl | oHEX4 D[1] | PIN_P2
Tx10 | iSW[5] | PIN_AC24 c | oHEX3_D[2] | PIN_N10 cl | oHEX4_D[2] | PIN_P3
Tx11 | iSW[6] | PIN_AC23 d | oHEX3_D[3]| PIN_N7 d1 | oHEX4_D[3] | PIN_N2
SS |iSWI[8] | PIN_AD24 e | oHEX3_D[4] | PIN_MS8 el | oHEX4_D[4] | PIN_N3
RS [iSWI[9] | PIN_AE27 f | oHEX3_D[5] | PIN_M7 f1 | oHEX4_D[5] | PIN.M1

g | oHEX3.D[6] | PIN_M6 gl | oHEX4_D[6] | PIN_M2

c) Perform functional simulation using the combinations given the table below. The inputs “TX11
and TX10” should be combined together with “TX11” as the MSB and format is unsigned
decimal. The inputs “TX01 and TX00” should be combined together with “TX01"” as the MSB
and format is unsigned decimal. The outputs “a, b, ¢, d, e, f, and g” should be combined

«_n

together with “a”_as the MSB and format is hexadecimal. Similarly, the outputs “al, b1, c1,
d1, el, f1, and g1” should be combined together with “al”_as the MSB and format is

hexadecimal.
Inputs Outputs

ss RS | TX11 | TX10 | TX01 | Txoo |, 2‘to:sim | al-to-glin
hexadecimal | hexadecimal

0 0 1 0 0 0

0 0 1 1 0 1

0 1 0 1 1 0

0 1 0 0 1 1

1 0 1 0 0 0

1 0 1 1 0 1

1 1 0 1 1 0

1 1 0 0 1 1

Paste a snapshot of your “circuit1l.v” simulation report here:

Experiment 6
Arithmetic Circuits Design and Implementation

Introduction:

Addition is just what you would expect in computers. Digits are added bit by bit from right to
left, with carries passed to the next digit to the left, just as you would do by hand. Subtraction
uses addition: the appropriate operand is simply negated before being added.

Objectives:

e To understand the concept of Half and Full Adders.
Design and build Ripple Carry Adder .

Introduce 4-bit magnitude comparator.

Design and implement binary multiplier

Half Adder:

Half adder is a combinational circuit that adds only two one bit numbers ,Since there are
two inputs (x and y), only four possible combinations of inputs can applied . These four
possibilities, and the resulting sums are shown in following truth table.

D A
D_

- = o o =
—_ O = O -
cooo|ln
O = = oftn

Logic Diagram of the Half-4dder

Table of the Half-Adder

Figure(1)
S =X i_}} _'I,.-‘ = 1" .1__1 1 x}_,l

C=xy

CPE 0907234 Digital logic lab
Page 1 of 5

6

Full Adder:

Full adder is a combinational circuit that adds three bits and generates a sum and carry.

oI

z

e e U i T e T e T e T -~ 4
e T T = B = R e I e T B
T e Y e T e T e |

_ 0 0O == O == - | N

0
1
0
1
0
1
0
1

Truth Table of the Full-Adder

From the truth table, we can obtain the Boolean expression of C & S outputs as follows :

S = .?1.-. _1-"": + IPJ__-;-I_'_IJ__.l ZH‘TFE
C=x"yz+xy'Z+xyz'+x)zZ

Using Map-simplification method, we can get the simplified forms as follows :

Il
f;“l
&}
-1

5 ¥
C

I-]
+
et
[

xX&
=XV+ ¥

Now, we can construct the full-adder circuit based on the simplified Boolean expression of S
and C outputs

— ~.
—
./ DJ_D_ c

Logic Diagram forthe Full-Adder
Figure(2)

CPE 0907234 Digital logic lab
Page 2 of 5

Ripple Adder

Two binary numbers, each of n bits, can be added using a ripple adder, a cascade of n full
adders; each full adder handles one bit. Each Cout of a full adder is connected to the Cin of
the higher full adder. The Cin of the least significant full adder is set to 0.

Adder-Subtractor circuit

The subtraction of two binary numbers can be done by taking the 2’s complement of the
subtrahend and adding it to the minued. The 2’s complement can be obtained by taking the
1’s complement and adding 1. To perform A - B, we complement the four bits of B, add them
to the four bits of A, and add 1 to the input carry.

We may use XOR gate as an inverter if placing a logic “1” at one of the inputs. This helps in
getting the 1’s complement of the subtrahend; then we add “1” to get the 2’s complement;
which in turn is added to the minued to get the final result of the subtraction.

Figure below shows adder-subtractor circuit; the mode input M controls the operation; when
M=0, the circuit is an adder. When M=1, the circuit becomes a subtractor. This circuit can be
cascaded for any number of inputs.

B3 A3 A2 29

LT
T ar
VYL Y

C3

FA A [FA |
r I 4 '

C4 S35 52 31

F

Logic Diagram of 3-bit Adder-Subtractor Circuit

Figure(3)

CPE 0907234 Digital logic lab
Page 3 of 5

Multiplier:

If we want to multiply tow numbers(A,B) ,each of them is consist of two bit as follows:
B = {B1 B0},

A= {Al A0}
Then we multiply by doing single-bit multiplications and shifts.
B Bo
Aq Ao
AsBy AyBg
AB; ABg

Cs ©Co oF Co

B, By Ag B, By
A, A, | | AND
0By AoBo computes
Ay By
AB, AB,
C; C cC, C Ar—on
3 2 o B|] B|.;.
L‘JJ L‘JJ Half adder
r i computes
: sum. Wil
HA HA need FA for
J larger
j l l multiplier.
'1!
Cs C; C, Co
Figure(4)

CPE 0907234 Digital logic lab
Page 4 of 5

Comparator:

Another common and very useful combinational logic circuit is that of the Digital
Comparator circuit. Digital or Binary Comparators are made up from standard AND, NOR
and NOT gates that compare the digital signals at their input terminals and produces an
output depending upon the condition of the inputs. For example, whether input A is greater
than, smaller than or equal to input B etc.

Digital Comparators can compare a variable or unknown number for example A (A1, A2,
A3, An, etc) against that of a constant or known value such as B (B1, B2, B3, Bn, etc)
and produce an output depending upon the result. For example, a comparator of 1-bit, (A and
B) would produce the following three output conditions.

A>B, A=B, A<B

1-bit Comparator

T s e
-

:D_ o< TE7E DA

E=AB —)A>B

Then the operation of a 1-bit digital comparator is given in the following Truth Table.

Truth Table
Inputs Outputs
B | A A>B A=B A<B
0 0 0 1 0
0 1 1 0 0
1 0 0 0 1
1 1 0 1 0

CPE 0907234 Digital logic lab
Page 5 of 5

University of Jordan
Faculty of Engineering and Technology
Department of Computer Engineering
Digital Logic Laboratory 0907234

Labsheet6: Arithmetic and Logic Unit (ALU) Design and Simulation

Name:

Student ID:

Section:

Problem Description:

The goal of this experiment is to design a simple 2-bit ALU combinational circuit that performs three
unsigned operations: addition, subtraction and multiplication. As shown in Figure 1, the ALU circuit
has two 2-bit unsigned numbers A {A1A0} and B {B1B0} as inputs and a 4-bit unsigned number R
{R3R2R1R0} as an output. The ALU circuit also has 2-bit control signal m {m1mO0} that is used to choose
the desired ALU operation as shown in Table 1.

mg

% Y
A, A, 0 — As
Ag Ag C D‘A‘
2-bit o - }
B, B, Adder/ S Ay
By B, Subtractor s, A,
) ();_ R_l
My S Quad O R:
21 O,—— R,
MUX Opf—— Ry
A
A“ r\l'll_l Bj
2-bit M, B,
Multiplier M, B,
_— B]
B, M, By .
m]\;l

Figure 1: ALU Diagram

Table 1: ALU Truth Table

mi mo Arithmetic Operation
0 0 Addition
0 1 Subtraction
1 X Multiplication

The experiment is divided into four parts: 2-to-1 quad multiplexer implementation, 2-bit ripple-carry
adder/subtractor implementation, 2-bit multiplier implementation, and top-level entity.

Partl: 2-to-1 Quad MUX

a) Inside the Mux2to1.v file, write a behavioral Verilog code to implement a 2-to-1 multiplexer
module. This module has three inputs (10, I1 and S) and one output (OUT). (Pre-lab)

b) Inside the QuadMux2to1.v file, write a structural Verilog code to implement the quad 2-to-1
multiplexer module using four instances of the 2-to-1 multiplexer design in part a. This module
has nine inputs (A3, A2, A1, A0, B3, B2, B1, BO and S) and four outputs (03,02, 01 and 00). Notice
that when S = 0, input A {A3A2A1A0} is selected. (Pre-lab)

Paste your “Mux2to1.v” code here:

Paste your “QuadMux2to1.v” code here:

Part2: 2-bit Ri

le-Carrv Adder/Subtractor

a) Fill-in the truth table for the 1-bit Full Adder (FA) shown in Figure 2.

Inputs

Outputs

Cin

inl

in0

Cout

sum

sum[——
— inl FA

Cout
— Cin

Figure 2: 1-to-2 DMUX

(Pre-Lab)

b) Write the Boolean equations of outputs sum and Cout: (Pre-Lab)

sum =

Cout =

c) Inside the FA.v file, write a behavioral Verilog code to implement the Full Adder module. This
module has three inputs (in0, in1 and Cin) and two outputs (sum and Cout).

Paste your “FA.v” code here:

d) Inside the TwoBitAdderSubtractor.v file, write a structural Verilog code to implement the 2-
bit adder/subtractor module shown in Figure 3 using two cascaded full adders and two XOR
gates from lib.v.. This module has five inputs (A0, A1, B0, B1, and S) and three outputs (SO, S1,

and Cout).
B1 Al BO AO
-% S
in1 in0 inl in0
Cout FA Cin Cout FA Cin
sum sum
Cout s1 S0

Figure 3: 2-bit Adder/Subtractor

Paste your “TwoBitAdderSubtractor.v” code here:

Part3: 2-bit Multiplier

0 —— A,y
A
By } Ao Cou| M
A, 2-bit
B, } B, Adder/ S, M,
Ao D B, Subtractor
B[S[) — M|
0———S
AU \I M{)
BH' _.-I}

Figure 4: 2-bit Multiplier

a) Inside the Mul.v file, write a structural Verilog code to implement the 2-bit multiplier module
shown in Figure 4 using one instance of the 2-bit adder/subtractor circuit and four instances of
the 2-input AND gate module from lib.v. This module has four inputs (A0, A1, BO, and B1) and
four outputs (M0, M1, M2 and M3).

Paste your “Mul.v” code here:

Part4: ALU Circuit

a) Inside the ALU.v file, write a structural Verilog code to implement the full ALU circuit module
given in Figure 1.

Paste your “ALU.v” code here:

b) Set “ALU.v” as top-level entity and perform functional simulation using the waveform file given
to you “ALU.vwf” and make sure that your design is functionally correct.

Paste a snapshot of your “ALU.v” simulation report here:

Part5: ALU Implementation on FPGA

In order to implement and test the ALU design on the FPGA, four 7-segment displays are needed to show
the values of operand A, operand B, operation (i.e. addition, subtraction, or multiplication), and result.
You are provided with two Verilog files that are already completed for you: “segdriver2.v” for operation
and “segdriver4.v” for operands and result.

a) Inside the ALU FPGA.v file, write a structural Verilog code that interfaces the ALU circuit with
the four 7-segment drivers.

b) Set “ALU_FPGA.v” as top-level entity and assign the following pins to the inputs and outputs in
the "ALU FPGA.v" file, download your design on the FPGA, and test it.

Input Switches
BO iSW[1] PIN_AB26
B1 iSWJ[2] PIN_AB25
m0 iSW[3] PIN_AC27
ml iSW[4] PIN_AC26
A0 iSWJ5] PIN_AC24
Al iSW[6] PIN_AC23
Result 7-seg Display
a0 | oHEX0_D[0] | PIN_AES8
b0 | oHEX0_D[1] | PIN_AF9
cO0 | oHEX0_D[2] | PIN_AH9
d0 | oHEX0_D[3] | PIN_AD10
[4]
[5]

e0 | oHEX0_D[4] | PIN_AF10
f0 | oHEX0_D[5] | PIN_AD11
g0 | oHEX0_D[6] | PIN_AD12
Operand-B 7-seg Display

al | oHEX1_D[0] | PIN_AG13
b1l | oHEX1_DJ[1] | PIN_AE16
cl | oHEX1_D[2] | PIN_AF16
dl | oHEX1_DJ[3] | PIN_AG16

[4]

[5]

]

el | oHEX1 D[4] | PIN_AE17
f1 | oHEX1 D[5] | PIN_AF17
gl | oHEX1_D[6] | PIN_AD17
Operation 7-seg Display

a2 | oHEX2_DJ0] | PIN_AE7
b2 | oHEX2_D[1] | PIN_AF7
c2 | oHEX2_D[2] | PIN_AH5
d2 | oHEX2 D[3] | PIN_AG4

[4]

[5]

e2 | oHEX2_D PIN_AB18
f2 | oHEX2_DJ[5] | PIN_AB19
g2 | oHEX2_D[6] | PIN_AE19
Operand-A 7-seg Display
a3 | oHEX3_D[0] | PIN_P6
b3 | oHEX3_D[1] | PIN_P4
c3 | oHEX3_D[2] | PIN_N10
d3 | oHEX3_D[3] | PIN_N7
e3 | oHEX3 D[4] | PIN_MS8

[5]

[6]

f3 | oHEX3_D[5 PIN_M7
g3 | oHEX3_D[6 PIN_M6

Experiment 7
Introduction to Latches and Flip-Flops and registers

Introduction:

The logic circuits that have been used until now were combinational logic circuits since the
output of the device depends on the input data. Sequential logic circuits are defined as circuits
whose outputs depend both on the present values of the inputs and the previous state of the
circuits. Latches and flip-flops are basic sequential circuit whose operation we will
investigate during this experiment. The difference between these two sequential devices is
that flip-flop's output changes only at specific times determined by a clocking signal, while
latch's output changes independent of a clocking signal.

Sequential circuits form the basis of registers, memories, and state machines, which in turn
are vital functional units in digital design.

Objectives:

e Design, build, and test various sequential logic circuits.

e An in-depth study of the operation of S-R, J-K, master-slave, and edge-triggered latches
and flip-flops.

¢ An introduction to commercially available flip-flops.

Procedure:

1- The S-R Latch

The most basic sequential unit is the S-R latch. From this basic circuit flip-flops are
constructed, and from flip-flops, the registers, memories, and state machines can be made.
The basic S-R latch has two inputs, S and R, and two outputs, Q and Q".

R (Reset) S R|Q Q
1 0|1 0
Set state
0 0 1 0
o 1,0 1
o ol o 1 Reset state
S (Set) 1 1]/0 0 Undefined
(a) Logic diagram (b) Function table
SRLatch with NOR Gates
Figure(1)
Similar SR latch can be made from NANDs as follow:
S (Set) q S RIQ Q
o 1,1 0
Set state
i 1]1 0
>< 10 0 f
1 1.0 1 Reset state|
R (Reset) . 0 01 1 Undefined
(a) Logic diagram (b) Function table
Figure(2)

CPE 0907234 Digital logic lab
Page 1 of 6

7

2- The S-R Latch with Clock (S-R Flip-Flop)
To achieve synchronous operation, the latch should change state only on the proper clock
signal. For example, assume that the latch should change state only when the clock signal
goes high, else the latch holds its value independently from the value of S and R.

So we can adjust the circuit we have implemented above to have a third input (CIk).

D Do

C— >~< 1 1 | Q=0; Reset state

11 0| Q=1;Setstate
)3 Q 1 1 1| Undefined

Next state of Q

R
X | Nochange
0

No change

o o = W

R
(a) Logic diagram (b) Function table
Figure(3)
3- D Flip-Flop
— D o — D C) o Operation
— »C 0 [Rising | O 1 | Reset (stores O)
_ edge
& e
1 |Rising | 1 0 Set (stores (1)
edge

Figure(4)

» Notice that a D flip flop can be made from S-R flip flop by ensuring that the S and R
outputs are the complement of each other at all times.

4- T Flip-Flop
T o T C Q Operation .
—>C 0O |Rising | 0 | Q (No change)
_ edge
L) S =

1 |Rising | 1 ¢ (complement)

edge

Figure(5)

CPE 0907234 Digital logic lab
Page 2 of 6

5- J-K Flip-Flop
The J-K flip-flop is simply an S-R flip-flops that has been modified so that both inputs can be
active at the same time. Where in the S-R flip-flop this condition was considered invalid, in
the J-K flip-flop this condition toggles the output on successive clock cycles.

iD“ T

Figure(6)

J | K C 0 o Operation
0 |0 |Rising | 2, | @ Hold (no
edge change)
— 17
¢ 0 1 |Rising | O 1 Reset
edge
— =C
_ 1 |0 |Rising | 1 0 set
edge
Kk 2 :
L 11 |Rising| g, | 2 Toggle
edge
Figure(7)

6- Master-Slave Flip-Flop

There is a slight problem with using a clock pulse. During the time the clock is high, the flip-
flop performs identically to the regular asynchronous latch. Thus, if the inputs changed
multiple times while the clock was high, the state of the latch could also change multiple
times. One technique for eliminating multiple- state transition during a single clock cycle is
the use of a master-salve arrangement.

J 0 J e

e

Figure(8)
The left or master Latch in Figure above forms the inputs to the flip-flop, and the right or
slave latch forms the outputs of the flip-flop. The master latch looks at the inputs while the
clock is high. When the clock returns low, the slave latch is enabled, using the outputs of the
master latch as its inputs. Thus the inputs are "read" while the clock is high and transferred to
the outputs when the clock returns low.

CPE 0907234 Digital logic lab
Page 3 of 6

7- Direct inputs:

e Set/Reset independent of clock
» Direct set or preset
» Direct reset or clear

SR CD Q O L
S

01 X X 1 0 b .

1 0 X X 0 1

00 X X Undefined

L1t o oo —+ ¢ 0
R

I 1 T 1 10 ?

(b) Function table (c) Simplified Symbol

Figure(9)

8- 3-Stage Shift Register

A group of cascaded FFs used to store related bits of information is known as a register. A
register that is used to store information arriving from a source is called a shift register. Each
FF output of a shift register is connected to the input of the next FF, and a common clock
pulse is applied to all FFs. Hence, the shift register is a synchronous sequential circuit. The
storage capacity of a register is the number of bits of digital data it can store. Each FF in a
register represents one-bit storage capacity, therefore, the number of FFs in a register
determine its total storage capacity.

Ro—— . E— - :
Figure(10)
Counter:

Counter: is essentially a register that goes through a predetermined sequence of states.

The gates in the counter are connected in such a way as to produce the prescribed sequence of
binary states.

The counting sequence is often depicted by a graph called a state diagram.

A counter with m-states has the following state diagram:

CPE 0907234 Digital logic lab \®

Each node Si denotes the states of the counter and the arrows in the graph denote the order in
which the states occur.

Counters are available in two categories: ripple (Asynchronous) counters and synchronous
counters.

1) Ripple (Asynchronous) Counter:

In a ripple counter, the flip-flop output transition serves as a source for triggering other flip-
flops; In other words, clock inputs of the flip-flops are triggered by output transitions of other
Flip-flops, rather than a common clock signal.

The output of each FF is connected to the clock input of the next flip-flop in sequence.

3-Stage Asynchronous Binary Counter

In the previous experiment, the edge—triggered JK FF was wired to operate as a toggle. Every
time a clock pulse was detected at the input, the output changed state. After two clock pulses
were detected, the output of the FF returned to its original state. As a result, there were two
state changes of the output and the frequency of the input clock was divided by two.
Therefore two events occurred, the number of clock pulses was counted and the frequency of
the output was divided by 2. The circuit of Figure 3 contains the logic diagram for a three bit
asynchronous binary counter with Q2 being the MSB. The frequency of the input clock is
divided by two for the first FF and divided by two for the second FF and then divided by two
again for the third FF. The frequency at Q2 has been divided by eight or 2n were n is the
number of FFs in the circuit. There are also eight states in the truth table. This factor 2" is
also called the Modulus or MOD of the counter. Since this counter has 3 FFs, it is referred to
as a MOD 8 counter. The MOD of any counter may be modified by connecting the proper
combinational logic between the outputs of the appropriate FF and the Clear input. To
convert the counter in Figure 3 to a MOD 7 counter, NAND the Qo, QI, Q2 inputs and
connect the output of the NAND gate to the CLEAR input (active low input) of all the FFs.
Figure 3 is an asynchronous device since the preceding FF must complete one cycle to
provide the clock pulse for the next FF in the counter. The FFs do not change state at the
same time and this creates a ripple effect in the way that the output of each FF changes state.
This ripple effect is more noticeable in a MOD 16 or higher counter when the count resets
from 15 or the maximum count back to 0. Another name for the asynchronous counter is the
Ripple Counter.

Figure (11)

+ Advantages of Ripple Counters:
e Simple hardware and design.
+ Disadvantages of Ripple Counters:
e They are asynchronous circuits, and can be unreliable and delay dependent, if
more logic is added.
e Large ripple counters are slow circuits due to the length of time required for
the ripple to occur.

CPE 0907234 Digital logic lab
Page 5 of 6

2) Synchronous Binary Counter

In the previous Asynchronous binary counter example, we saw that the output of one
counter stage is connected directly to the input of the next counter stage and so on along
the chain, and as a result the asynchronous counter suffers from what is known as
"Propagation Delay". However, with Synchronous Counters, the external clock signal is
connected to the clock input of EVERY individual flip-flop within the counter so that all
of the flip-flops are clocked together simultaneously (in parallel) at the same time givi ng
a fixed time relationship. This results in al the individual output bits changing state at
exactly the same time with no ripple effect and therefore, no propagation delay.

CPE 0907234 Digital logic lab
Page 6 of 6

University of Jordan
Faculty of Engineering and Technology
Department of Computer Engineering
Digital Logic Laboratory 0907234

Labsheet 7: Latches and Flip-Flops

Name:

Student ID:

Section:

Part 1: Clocked SR-latch Verilog Implementation and Simulation

s SR-Latch Function table
Rezs=t }C
nsth Reset |C |S |R Operation
T — — o 1 X |x |x Reset
N] o 0 0 |x |x Hold
— a
IDD_ tcjo_ :D 0 1 (0 |0 Hold
o _| 0 1 |0 |1 Reset
s A — 0 1 1 0 Set
] - 0 1 |1 |1 Forbidden

Figure7 : Clocked SR-latch Implementation

1. Inside the SR2.v file, write a structural Verilog module to implement the clocked SR-latch given
in Figurel . The modules for the basic gates are given in the lib.v file.

2. Use the SR2.vwf vector waveform file to perform functional simulation for your module in
SR2.v (i.e. SR2.v should be set as top-level entity). Validate that the outputs’ values are correct.

3. Paste your SR2.v code and a snap shot of the simulation report in the spaces given below.

Paste your “SR2.v” code here:

Paste a snapshot of your “SR2.v” simulation report here:

Part 2: D-FF Implementation and Simulation

Rzt

(=]
5

Figure 2: D-FF Implementation

1. Fill the function table below with the correct operation for the positive-edge triggered D-FF.

R|C|D Operation
1| x| x
olT]o
olT]1

2. Inside the dffl.v file, write a structural Verilog module to implement the D-FF circuit given in
Figure 2. You need to use the clocked SR-latch module defined in SR2.v and the basic gate
modules defined in lib.v.

3. Use the dffl.vwf vector waveform file to perform functional simulation for your module in
dffl.v (i.e. dffl.v should be set as top-level entity). Validate that the outputs’ values are correct.

4. Paste your dffl.v code and a snap shot of the simulation report in the spaces given below.

Paste your “dff1.v” code here:

Paste a snapshot of your “dff1.v” simulation report here:

Part 3: JK-FF Implementation and Simulation

| -
e —>

Figure 3: JK-FF Implementation

1. Fill the function table below with the correct operation for the positive-edge triggered JK-FF.

(@]
—

K Operation

ocolo|locojo|r | =

S| > x
== OO | X
= O | = O | X

2. Inside the jkffl.v file, write a structural Verilog module to implement the JK-FF circuit given in
Figure 3. You need to use the D-FF module defined in dffl.v and the basic gate modules defined
in lib.v.

3. Use the jk.vwf vector waveform file to perform functional simulation for your module in jkff1.v
(i.e. jkffl.v should be set as top-level entity). Validate that the outputs’ values are correct.

4. Paste your jkffl.v code and a snap shot of the simulation report in the spaces given below.

Paste your “jkff1.v” code here:

Paste a snapshot of your “jkff1.v” simulation report here:

Part 4: T-FF Implementation and Simulation

U_:> T\:D7

9, —

Figure 4: T-FF Implementation

1. Fill the function table below with the correct operation for the positive-edge triggered T-FF.

R|C|T Operation
1| x| x
o|T]o0
0o|T]1

2. Inside the tffl.v file, write a structural Verilog module to implement the T-FF circuit given in
Figure 4. You need to use the D-FF module defined in dffl.v and the basic gate modules defined
in lib.v.

3. Use the tff1.vwf vector waveform file to perform functional simulation for your module in tff1.v
(i.e. tff1.v should be set as top-level entity). Validate that the outputs’ values are correct.

4. Paste your tffl.v code and a snap shot of the simulation report in the spaces given below.

Paste your “tff1.v” code here:

Paste a snapshot of your “tff1.v” simulation report here:

Experiment 8
Introduction to Latches and Flip-Flops and registers

Introduction:

The logic circuits that have been used until now were combinational logic circuits since the output of the
device depends on the input data. Sequential logic circuits are defined as circuits whose outputs depend both
on the present values of the inputs and the previous state of the circuits. Latches and flip-flops are basic
sequential circuit whose operation we will investigate during this experiment. The difference between these
two sequential devices is that flip-flop's output changes only at specific times determined by a clocking
signal, while latch's output changes independent of a clocking signal.

Sequential circuits form the basis of registers, memories, and state machines, which in turn are vital
functional units in digital design.

Objectives:

e Design, build, and test various sequential logic circuits.

e An in-depth study of the operation of S-R, J-K, master-slave, and edge-triggered latches and flip-flops.
e Anintroduction to commercially available flip-flops.

Procedure:

1- The S-R Latch

The most basic sequential unit is the S-R latch. From this basic circuit flip-flops are constructed, and from
flip-flops, the registers, memories, and state machines can be made. The basic S-R latch has two inputs, S
and R, and two outputs, Q and Q.

R (Reset) o S R|Q Q
1 01 0
Set state
P 0 0|1 0
— 0 1]0 1
0 olo 1 Reset state|
S (Set) Q 1 1]0 0 undefined
(a) Logic diagram (b) Function table
SRLatch with NOR Gates
Figure(1)
Similar SR latch can be made from NANDs as follow:
S (Set) } q S R|Q Q
0 111 0
Set state
o 1 1]1 0
><ﬁ__~__ 1 0|0 1
1 110 1 Reset state
R (Rese) } a 0 01 1 Undefined
(a) Logic diagram (b) Function table
Figure(2)

2- The S-R Latch with Clock (S-R Flip-Flop)
To achieve synchronous operation, the latch should change state only on the proper clock signal. For
example, assume that the latch should change state only when the clock signal goes high, else the latch holds
its value independently from the value of S and R.

CPE 0907234 Digital logic lab
Page 1 of 6

So we can adjust the circuit we have implemented above to have a third input (CIk).

s C S R | Nextstate of Q
) Q 0 X X | Nochange
1 0 0 Nochange
C— >< 1 0 1| Q=0;Reset state
1 1 0| Q=1;Setstate
Q 1 1 1 | Undefined
A .
(a) Logic diagram (b) Function table
Figure(3)
3- D Flip-Flop
—D oo D C Q|2 Operation |
— »C O |Rising | O 1 | Reset (stores O)
_ edge
& Oy
1 |Rising | 1 0 Set (stores (1)
edge
Figure(4)

> Notice that a D flip flop can be made from S-R flip flop by ensuring that the S and R outputs are the
complement of each other at all times.

4- T Flip-Flop
T Q T C Q Operation .
>c 0 |Rising | 0 | Q@ (o change)
— edge
Q e =
1 |Rising | 1 © (complement)
edge
Figure(5)
5- J-K Flip-Flop

The J-K flip-flop is simply an S-R flip-flops that has been modified so that both inputs can be active at the
same time. Where in the S-R flip-flop this condition was considered invalid, in the J-K flip-flop this
condition toggles the output on successive clock cycles.

- J | K C Q o Operation
0 7 o e _

@)_o——u 0 | O |Rising | @ | &, Hold (no
1k c edge change)
0

1B 7} 0 | 1 |Rising| O 1 Feset
@” ﬂ4) edge
; . 1 0 | Risin 1 0 Set
Figure(6) Figure(7) edgeg
L1 Rising | g, | 2 Toggle
edge

CPE 0907234 Digital logic lab
Page 2 of 6

6- Master-Slave Flip-Flop

There is a slight problem with using a clock pulse. During the time the clock is high, the flip-flop performs
identically to the regular asynchronous latch. Thus, if the inputs changed multiple times while the clock was
high, the state of the latch could also change multiple times. One technique for eliminating multiple- state
transition during a single clock cycle is the use of a master-salve arrangement.

J o I

@

— >

Figure(8)
The left or master Latch in Figure above forms the inputs to the flip-flop, and the right or slave latch forms
the outputs of the flip-flop. The master latch looks at the inputs while the clock is high. When the clock
returns low, the slave latch is enabled, using the outputs of the master latch as its inputs. Thus the inputs are
"read" while the clock is high and transferred to the outputs when the clock returns low.

7- Direct inputs: SR CD Q0 L
S
. 01 X X 1 0O
e Set/Reset independent of clock , —{D —
. 1 0 X X 0 1
> Direct set or preset 00 X X Undefined
> Direct reset or clear cnaetme
1 1 T 0 0 1 —C 0
R
1 T 1 1 0 ([,
(b) Function table (c) Simplified Symbol

Figure(9)

8- 3-Stage Shift Register

A group of cascaded FFs used to store related bits of information is known as a register. A register that is
used to store information arriving from a source is called a shift register. Each FF output of a shift register is
connected to the input of the next FF, and a common clock pulse is applied to all FFs. Hence, the shift
register is a synchronous sequential circuit. The storage capacity of a register is the number of bits of digital

data it can store. Each FF in a register represents one-bit storage capacity, therefore, the number of FFs in a
register determine its total storage capacity.

CPE 0907234 Digital logic lab
Page 3 of 6

Counter:

Counter: is essentially a register that goes through a predetermined sequence of states.

The gates in the counter are connected in such a way as to produce the prescribed sequence of binary states.
The counting sequence is often depicted by a graph called a state diagram.

A counter with m-states has the following state diagram:

Each node Si denotes the states of the counter and the arrows in the graph denote the order in which the

states occur.
Counters are available in two categories: ripple (Asynchronous) counters and synchronous counters.

1) Ripple (Asynchronous) Counter:

In a ripple counter, the flip-flop output transition serves as a source for triggering other flip-flops; In other
words, clock inputs of the flip-flops are triggered by output transitions of other

Flip-flops, rather than a common clock signal.

The output of each FF is connected to the clock input of the next flip-flop in sequence.

3-Stage Asynchronous Binary Counter

In the previous experiment, the edge—triggered JK FF was wired to operate as a toggle. Every time a clock
pulse was detected at the input, the output changed state. After two clock pulses were detected, the output of
the FF returned to its original state. As a result, there were two state changes of the output and the frequency
of the input clock was divided by two. Therefore two events occurred, the number of clock pulses was
counted and the frequency of the output was divided by 2. The circuit of Figure 3 contains the logic diagram
for a three bit asynchronous binary counter with Q2 being the MSB. The frequency of the input clock is
divided by two for the first FF and divided by two for the second FF and then divided by two again for the
third FF. The frequency at Q2 has been divided by eight or 2n were n is the number of FFs in the circuit.
There are also eight states in the truth table. This factor 2" is also called the Modulus or MOD of the
counter. Since this counter has 3 FFs, it is referred to as a MOD 8 counter. The MOD of any counter may be
modified by connecting the proper combinational logic between the outputs of the appropriate FF and the
Clear input. To convert the counter in Figure 3 to a MOD 7 counter, NAND the Qo, Q1, Q2 inputs and
connect the output of the NAND gate to the CLEAR input (active low input) of all the FFs. Figure 3 is an
asynchronous device since the preceding FF must complete one cycle to provide the clock pulse for the next
FF in the counter. The FFs do not change state at the same time and this creates a ripple effect in the way that
the output of each FF changes state. This ripple effect is more noticeable in a MOD 16 or higher counter
when the count resets from 15 or the maximum count back to 0. Another name for the asynchronous counter
is the Ripple Counter.

Figure (11)

CPE 0907234 Digital logic lab
Page 4 of 6

+ Advantages of Ripple Counters:
e Simple hardware and design.
+ Disadvantages of Ripple Counters:
e They are asynchronous circuits, and can be unreliable and delay dependent, if
more logic is added.
e Large ripple counters are slow circuits due to the length of time required for the ripple to
occur.

2) Synchronous Binary Counter

In the previous Asynchronous binary counter example, we saw that the output of one counter stage is
connected directly to the input of the next counter stage and so on along the chain, and as a result the
asynchronous counter suffers from what is known as "Propagation Delay"”. However, with Synchronous
Counters, the external clock signal is connected to the clock input of EVERY individual flip-flop within
the counter so that all of the flip-flops are clocked together simultaneously (in parallel) at the same time
giving a fixed time relationship. This results in all the individual output bits changing state at exactly the
same time with no ripple effect and therefore, no propagation delay.

CPE 0907234 Digital logic lab
Page 5 of 6

3) BCD Counter (74LS160)
Since some digital functions are performed in BCD, the decade counter is often used.

SHRIC. BT
R T ESEE

fEEE =] T
j P e
LR =3 D
TET . o
LaTe AT

RES Fecte
e o

ra .- ErT

TA1LGO

Figure 5

AN

e CK: The counter clock.
e EN.P, EN.T: Are the two active high enable signals.
e QAQBQCQD: 4-bit counter output.
e RES: Active low reset input; when RES = 0 then the output QAQBQCQD = 0000.
e LOAD: active low load input; if:
- LOAD = 0 then the counter start counting from the value on the inputs (IN.A, IN.B, IN.C, IN.D) to
9 each clock cycle.
- LOAD =1 then the counter start counting from the value on QAQBQCQD to 9 each clock cycle.
¢ IN.A, IN.B, IN.C, IN.D: The starting count value when LOAD = 0.

IN.A'IN.B IN.C IN.D = 0101 IN.A IN.B IN.C IN.D = 0101 IN.A IN.B IN.C IN.D = 0101
CLOCK | Counter | LOAD CLOCK | Counter | LOAD CLOCK | Counter | LOAD
output output output
1 0 1 1 5 0 1 5 0
2 1 1 2 5 0 2 6 1
3 2 1 3 6 1 3 7 1
4 3 1 4 7 1 4 8 1
5 4 1 5 8 1 5 9 1
6 5 1 6 9 1 6 5 0
7 6 1 7 0 1 7 6 1
8 7 1 8 5 0 8 7 1
9 8 1 9 5 0 9 8 1
10 9 1 10 5 0 10 9 1
11 0 1 11 6 1 11 5 0

e Note that if you want to count like 5,6,7,8,9,5,6,...as in EX3 above then the LOAD input should be 0
when counter output reaches 9 to take the loaded value (5) not (0).

e RCO: The output that become “1” when the value on QAQBQCQD = 1001 and “0” otherwise.
This input is used to ensure that the load input become “0” when the counter output reaches “9” by
connecting RCO to inverter (because LOAD IS ACTIVE LOW) and the output of the inverter to the
LOAD input.

CPE 0907234 Digital logic lab
Page 6 of 6

University of Jordan
Faculty of Engineering and Technology
Department of Computer Engineering
Digital Logic Laboratory 0907234

Labsheet8: Shift Register & Counter Design

Name:

Student ID:

Section:

Problem Description:

In this experiment, you are required to implement the circuit shown in Figurel . The circuit consists
of two components: a 3-bit synchronous counter and a 3-bit shift register. Note that the “clk” input
of the counter is obtained from the external “clk” input. On the other hand, the “clk” input of the 3-
bit register is obtained from the “zero count” output of the 3-bit counter. The “zero count” output
is 0 when counter outputs C2, C1, and CO equal 001, 010, 011, 100, 101, 110, or 111. On the other
hand, the “zero _count” output is 1 when counter outputs C2, C1, and CO equal 000.

PO po 3-bit register
P1 P1
P2 P2 QO P Ut 0
mo mo a1 Out1
mil mi Q2] Out2
Reset
=2 Clock
3-bit counter
7-sen Driver
restart Reset
dk co .
1 b
<
clock 2 d
L
Ak cmmtos_clock out_dock zero_count {
- g

Figurel : A 3-bit Shift Register Controlled by a 3-bit Down Counter

Part 1: 3-bit Synchronous Counter

In this part, you are required to design a 3-bit count-down counter that counts 7, 6,5, 4, 3,2,1,0, 7,
6,5, 4, ... and so on using D flip-flops.

1. Fill the following state table according to the required counter design. (PreLab)
Present State Next State

C2 C1 CO C2 C1 CO D2 D1 DO
0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

2. Use the k-maps below to derive the optimized input equations of the three flip flops. (PreLab)

DO=

3. Draw the sequential circuit that implements the 3-bit counter. Add to your circuit the gate(s)
required to generate the output signal “zero count”.

4. In the file “threebitcounter.v”, write a Verilog module that implements the 3-bit counter with
the “zero count” signal structurally using the modules defined in “lib.v” and “dff1.v”.

5. Set “threebitcounter.v” as your top-level entity, compile, and perform functional simulation
using the file “Counter.vwf”. Make sure that your counter design works as expected, then paste
your code and simulation report below.

Paste your “threebitcounter.v” code here:

Paste a snapshot of your “threebitcounter.v” simulation report here:

6. Convert the 3-bit counter you built to a block as in the figure below. This block will be used in
the final circuit implementation in part 3. Do the following:
File > Create/Update - Create Symbol Files for Current Files

threebitcounter

— Reset (oo N o |
1 ck CF =

o 1
zero_count [—

Part 2: 3-bit Shift-Register

1. In the file “reg3b.v”, write a Verilog module that implements the 3-bit shift register shown in
Figure 2 structurally using the modules defined in “mux1.v” and “dff1.v”. Notice that the shift
register has four modes of operation according to the following table. The m1 and mO bits
represent the “Mode” bits used as select lines for the multiplexers.

m1l m0 Operation
0 0 Hold
0 1 Parallel Load
1 0 Rotate Right
1 1 Rotate Left

Q2

Q0

Reset .1
Clock

2
Mode ,l

Figure 2: 3-bit Shift Register

2. Set “reg3b.v” as your top-level entity, compile, and perform functional simulation using the file
“Reg.vwf”. Make sure that your shift register design works as expected, then paste your code
and simulation report below.

Paste your “reg3b.v” code here:

Paste a snapshot of your “reg3b.v” simulation report here:

3. Convert the 3-bit shift register you built to a block as in the figure below. This block will be used
in the final circuit implementation in part 3. Do the following:
File > Create/Update > Create Symbol Files for Current Files

readb

Part 3: Final Circuit

1. Create a new schematic file and save it as “circuit1.bdf”. In the file, build the schematic diagram
shown in Figure 1. This can be done by adding the segdecoder symbol, clock symbol, 3-bit
counter (threebitcounter) symbol, and 3- bit register (reg3b) symbol to your bdf file. In order to
add these symbols to your design, select the symbol of AND gate on the tool bar then expand the
project menu. If you cannot find the symbols under the project menu, you can add them by typing
the symbol name in the text box below.

2. Connect the symbols and add input (i.e. clk, restart, PO, P1, P2, m0, m1) and output (i.e. Out0,
Outl, Out2, a, b, ¢, d, e, f, g) ports.

3. Important Notes:

a. The block “clock.bsf” has one input “os_clock” and one output “out_clock”. This module
implements a frequency division circuit which will be used to divide the high frequency
clock of the FPGA oscillator (28 MHz) to obtain a slower clock (10 Hz) so that changes in
the counter value can be detected on the 7-segment display and provide sufficient time for
register setup. Hence, in your schematic diagram you are required to connect the “os_clock”
to an input pin called “clk” (which will be assigned to the oscillator clock when you do pins
assignment) and connect “out_clock” to the counter clock input.

b. Inyour schematic diagram connect the clock input of the register to the output zero_count
of the counter. This means that the state of the register will be updated each time the
counter reaches count 0 according to the mode setting.

4. Assign the following pins to the inputs and outputs in the “circuit1.bdf” file, download your
design on the FPGA, and test it.

Input Switches

clk PIN_E16
restart iSWJ1] PIN_AB26

m0 iSW[2] PIN_AB25

ml iSW[3] PIN_AC27

PO iSW[4] PIN_AC26

P1 iSW[5] PIN_AC24

P2 iSW[6] PIN_AC23

Outputs of the segdecoder

a | oHEX0_D[0] | PIN_AES
b | oHEX0_D[1] | PIN_AF9
c | oHEX0_D[2] | PIN_AH9
d | oHEX0_D[3] | PIN_AD10
e | oHEX0_D[4] | PIN_AF10
f | oHEX0_D[5] | PIN.AD11
g | oHEX0_D[6] | PIN_AD12

Outputs of the Shift Register
Out0 oLEDR]1] PIN_AKS5
Outl oLEDR]2] PIN_AJ5
Out2 oLEDR]3] PIN_AJ4

