

The University of Jordan

School of Engineering

Civil Engineering department

Spring 2017

Statics 0901241 (3 Credit hours)

Instructors	Yasser Hunaiti, Professor of Civil Engineering, BA, MSc, PhD
	Yasmin Murad, Assistant professor of Civil Engineering BA, MSc, PhD, and DIC
Emails	hunaiti@ju.edu.jo, y.murad@ju.edu.jo
Office hours	11-12 Sunday, Tuesday and Thursday.
Recommended books	Engineering Mechanics: Statics (14 th edition) by Russell C. Hibbeler.
	Engineering Mechanics: Statics (7 th edition) by J.L. Meriam and L. Kraige.

Course outline

- General principles.
- Force Vectors.
- Force systems (2D and 3D)
- Equilibrium of particles and rigid bodies (2D and 3D)
- Structures (trusses, frames and machines)
- Distributed forces (centroids and centers of mass)
- Beams (shearing force and bending moment diagrams)
- Moment of inertia

Prerequisite: General Physics-1 (0301101)

Required for Civil Engineering

Grading

	The marks will be distributed as follows	
•	Midterm Exam	30%
•	Participation, Homework, Attendance and Quizzes	10%
•	Final Exam	50%

٠

Course goals

- The student will be able to solve vector operations
- Student will be able to analyse force systems (2D and 3D)
- Student will be able to analyse equilibrium problems of particles and rigid bodies (2D and 3D).
- Student will be able to analyse structures (trusses, frames and machines)
- The student will be able to solve and analyse problems incorporating distributed forces.
- Student will be able to analyse beams and draw shearing force and bending moment diagrams
- Student will be able to calculate moment of inertia, centroids and centre of mass of rigid bodies.

ABET Outcomes

Course addresses ABET Student Outcome(s): a, and e

- An ability to apply knowledge of mathematics, science, and engineering [ABET: 3a]
- An ability to identify, formulate and solve engineering problems [ABET: 3e].

Brief list of topics to be covered

- General Principles
 - Mechanics
 - Fundamental Concepts
 - Units of Measurement
 - The International System of Units
- Force Vectors
 - Scalars and Vectors
 - Vector Operations
 - Vector Addition of Forces
 - Addition of a System of Coplanar Forces
 - Cartesian Vectors
 - Addition of Cartesian Vectors
 - Position Vectors
 - Force Vector Directed Along a Line
 - Dot Product
- Equilibrium of a Particle
 - Condition for the Equilibrium of a Particle
 - The Free-Body Diagram
 - Coplanar Force Systems
 - Three-Dimensional Force Systems
- Force System Resultants
 - Moment of a Force—Scalar Formulation
 - Cross Product
 - Moment of a Force—Vector Formulation
 - Principle of Moments
 - Moment of a Force about a Specified Axis
 - Moment of a Couple

- Simplification of a Force and Couple System
- Further Simplification of a Force and Couple System
- Reduction of a Simple Distributed Loading
- Equilibrium of a Rigid Body
 - Conditions for Rigid-Body Equilibrium
 - Free-Body Diagrams
 - Equations of Equilibrium
 - Two- and Three-Force Members
 - Free-Body Diagrams
 - Equations of Equilibrium
 - Constraints and Statically Determinacy
- Structural Analysis
 - Simple Trusses
 - The Method of Joints
 - Zero-Force Members
 - The Method of Sections
 - Frames and Machines
- Internal Forces
 - Internal Loadings Developed in Structural Members
 - Shear and Moment Equations and Diagrams
 - Relations between Distributed Load, Shear, and Moment
- Centre of Gravity and Centroid
 - Centre of Gravity, Centre of Mass, and centroids.
 - Composite Bodies
- Moments of Inertia
 - Definition of Moments of Inertia for Areas
 - Parallel-Axis Theorem for an Area
 - Radius of Gyration of an Area
 - Moments of Inertia for Composite Areas

Policies

- CHEATING WILL RESULT IN AN F GRADE.
- Students are expected to attend every class session. The university policy regarding the **ATTENDENCE** will be **STRICTLY** enforced.
- You are **NOT ALLOWED** to use **CELL PHONE** in class.
- If you have a course-related question, please see the instructor during office hours or set an appointment by **email**.
- You are expected to arrive in class and be seated **on time** and not leave the classroom before the instructor dismisses class.