ABET course syllabus (Geotechnical Engineering)

- *1. Course number and name* 0941231: Geotechnical Engineering
- 2. *Credits and contact hours* 3 Credit Hours
- 3. Instructor's or course coordinator's name Instructor: Bashar Tarawneh, Associate Professorof Civil Engineering Course Coordinator: Bashar Tarawneh, Associate Professor of Civil Engineering
- 4. Text book, title, author, and year
 - "Principles of Geo-technical Engineering", Braja M. Das and KhaledSobhan ,8thEdition, SI Edition, , 2014, Cengage Learning ,Stamford, CT 06902, USA
 - "An Introduction to Geotechnical Engineering", Robert D. Holtz, William D. Kovacs, Thomas C. Sheahan, 2nd Edition, 2012, Prentice Hall, Englewood Cliffs, New Jersey 07632, USA
 - a. other supplemental materials
 - "Soil Mechanics Principles and Parctice", Graham E. Barnes, 3rd Edition, 2010, Palgrave Macmillan
- 5. Specific course information
 - a. brief description of the content of the course (catalog description) Phase relationships. Physical properties of soil.Soil classification.Compaction, Stresses in Soils.Permeability and seepage. Shear strength. Compressibility, consolidation and settlement
 - b. prerequisites or co-requisites
 Prerequisite: Strength of Materials (0901241), Engineering Geology (0901230)
 Co-requisite: Geotechnical Engineering Lab(0901231)
 - c. indicate whether a required, elective, or selected elective (as per Table 5-1) course in the program Required for Civil Engineering
- 6. Specific goals for the course
 - a. specific outcomes of instruction, ex. The student will be able to explain the significance of current research about a particular topic.
 - The student will be able to evaluate soil unit weights using weightvolume relationships and principles of compaction.
 - The student will be able to apply the principles of fluid flow for permeability and seepage analysis.
 - The student will be able to calculate settlements using methods of stress distribution and principles of soil compression.

- The student will be able to solve shear problems using principles of shear strength.
- The student will be able to analyze data using laboratory experiments.
- *b.* explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed by the course.
 Course addresses ABET Student Outcome(s): a, b, and g
- 7. Brief list of topics to be covered
 - Introduction
 - Geotechnical Engineering
 - Deposition
 - Clay Mineralogy and Nano-structure
 - Phase relationships and Engineering classification of soils.
 - Index Properties of Soil
 - Shrinkage Limit
 - Plastic Limit
 - o Liquid Limit
 - Plasticity Index
 - Liquidity Index
 - Plasticity Chart
 - Phase Relationships
 - Gravimetric
 - Volumetric
 - Volumetric/Gravimetric
 - Soil Classification
 - Grain Size Analysis
 - Hydrometer
 - Classification
 - Soil Compaction
 - General Definition
 - Proctor Device (Standard and Modified)
 - Compaction Curves
 - Soil Structure
 - Field Density
 - Compaction types and equipment
 - Bernoulli's Equation and Permeability
 - o Bernoulli's Equation
 - o Darcy's Law
 - Hydraulic Conductivity
 - Absolute Permeability
 - o Tests
 - Seepage
 - o Laplacian
 - \circ Continuity
 - Flow nets

- Anisotropic Flow
- Uplift Pressure
- Stresses in a soil mass
 - Mohr Circle
 - Overburden Stresses
 - o Stresses due to external loads
- Compressibility of soils
- Mohr's circle of stresses;
- Shear strength of soils