

1

University of Jordan

Faculty of Engineering and Technology

Department of Computer Engineering

Embedded Systems Laboratory 0907334

Objectives
The main objectives of this experiment are to familiarize you with:

 Microchip MPLAB Integrated Development Environment (IDE) and the whole process of building a

project, writing simple codes, and compiling the project.

 Code simulation

 QL200 development kit

 QL-PROG software and learn how to program the PIC using it

Experiment 0: Introduction to MPLAB

and QL200 development kit

2

Starting MPLAB

After installation, shortcut of this software will appear on desktop.

Create asm file using MPLAB

a) Double click on the “MPLAB” program icon found on the desktop.

Note: All programs written, simulated and debugged in MPLAB should be stored in files with .asm

extension.

b) To create asm, follow these simple

steps:

i. File New

ii. File Save as, in the save

dialog box; name the file as

“myFirstFile.asm” WITHOUT

THE DOUBLE QUATATIONS

MARKS, this will instruct

MPLAB to save the file in .asm

format.

NOTE: All your files should be stored in a short path:

The total number of characters in a path should not exceed 64 Char No.

C:\ or D:\ or … 3

D:\Embedded\ 12

D:\Embedded\Lab 15

D:\Engineer\Year_Three\Summer_Semester\Embedded_Lab\Experiment_1\MyProgram.asm 78

Any file on Desktop

3

Create a project in MPLAB by following these simple steps:

1. Select the Project Project Wizard menu item Next

2. In the device selection menu, choose 16F84A (or your target PIC) Next

4

3. In the Active Toolsuite, choose Microchip MPASM Toolsuite Click next.

DO NOT CHANGE ANYTHING IN THIS SCREEN

4. Browse to the directory where you saved your ASM file. Give your project a name Save Next.

5

5. If, in Step 4, you navigated correctly to your file destination you should see it in the left pane

otherwise choose back and browse to the correct path. When done Click add your file to the project

(here: myFirstFile.asm). Make sure that the letter A is beside your file and not any other letter

Click next Click Finish.

6. You should see your ASM file under Source file, now you are ready to begin

Double click on the myFirstFile.asm file in the project file tree to open. This is where you will write

your programs, debug and simulate them.

 CORRECT WRONG

6

Now we will simulate a program in MPLAB and check the results

In MPLAB write the following program:

Movlw 5 ; move the constant 5 to the working register

Movwf 01 ; copy the value 5 from working register to TMR0 (address 01)

Movlw 2 ; move the constant 2 to the working register

Movwf 0B ; copy the value 2 from working register to INTCON (address 0B)

Movf 01, 0 ; copy back the value 5 from TMR0 to working register

Nop ; this instruction does nothing, but it is important to write for now

End ; every program must have an END statement

After writing the above instructions we should build the project, do so by pressing build

An output window should

show:

BUILD SUCCEDDED

Click Absolute

7

QL-PROG – How to Program
Prepared by Eng. Enas Jaara

After installation, shortcut of this software will appear on desktop.

1. Connect hardware and power up the kit, run the programming software QL-PROG (Double
click it to run the software) which will automatically search programmer hardware. It will
appear as shown in the below diagram

2. Select Chip Family and Chip model
 Choose All Chip from the chip family and choose 16F877A from the chip select

3. Press Erase button on programming software panel to Erase the chip data

4. Load File to Program
 Press “Load” button on programming software panel to load machine code file (HEX file) of the
chip you desire to program. load the LCD1.hex found on D:\Experiment0

8

5. Set Configuration Bit
You may set or change the configuration bit of chip by running pressing “Fuses” button on
software panel. After running the command software, pop-up window to set configuration bit will
appear as shown in below diagram. Set the options according to your requirement and click “OK”
button.

If any of the above option differs, it is because you have chosen the wrong PIC, so go to chip select
and choose your appropriate PIC.
6. Program the PIC
Press "Program" button to begin programming. After completion, there will be messages of
"Programming complete".

University of Jordan

Faculty of Engineering and Technology

Department of Computer Engineering

Embedded Systems Laboratory 0907334

Objectives

The main objectives of this experiment are to familiarize you with:

 The MOV instructions

 Writing simple codes, compiling the project and Code simulation

 The concept of bank switching

 The MPASM directives

 Microcontroller Flags

 Arithmetic and logical operations

1

Experiment 1: MPLAB and Instruction Set

Analysis 1

Pre-lab requirements

Before starting this experiment, you should have already acquired the MPLAB software and the related PIC

datasheets from drive D on any of the lab PC’s. You are encouraged to install the latest version of MPLAB

(provided in the lab) especially if you have Windows Vista

Starting up with instructions

Movement instructions

You should know by now that most PIC instructions (logical and arithmetic) work through the working register

“W”, that is one of their operands must always be the working register “W”, the other operand might be either a

constant or a memory location. Many operations store their result in the working register; therefore we can

conclude that we need the following movement operations:

1. Moving constants to the working register (Loading)

2. Moving values from the data memory to the working register (Loading)

3. Moving values from the working register to the data memory (Storing)

INSTRUCTIONS ARE CASE INSENSITIVE: YOU CAN WRITE IN EITHER SMALL OR CAPITAL

LETTERS

 MOVLW: moves a literal (constant) to the working register (final destination). The constant is

specified by the instruction. You can directly load constants as decimal, binary, hexadecimal, octal and

ASCII. The following examples illustrate:

DEFAULT INPUT IS HEXADECIMAL

1. MOVLW 05 : moves the constant 5 to the working register

2. MOVLW 10 : moves the constant 16 to the working register.

3. MOVLW 0xAB : moves the constant ABh to the working register

4. MOVLW H’7F’ : moves the constant 7Fh to the working register

5. MOVLW CD : WRONG, if a hexadecimal number starts with a character, you

 should write it as 0CD or 0xCD or H’CD’

6. MOVLW d’10’ : moves the decimal value 10 to the working register.

7. MOVLW .10 : moves the decimal value 10 to the working register.

8. MOVLW b ’10011110’ : moves the binary value 10011110 to the working register.

9. MOVLW O ’76’ : moves the octal value 76 to the working register.

10. MOVLW A’g’ : moves the ASCII value g to the working register.

 MOVWF: COPIES the value found in the working register into the data memory, but to which

location? The location is specified along with the instruction and according to the memory map.

So what is the memory map?

A memory map shows all available registers

(in data memory) of a certain PIC along with

their addresses, it is organized as a table

format and has two parts:

1. Upper part: which lists all the Special

Function Registers (SFR) in a PIC, these

registers normally have specific functions

and are used to control the PIC operation

2. Lower part: which shows the General

Purpose Registers (GPR) in a PIC; GPRs

are data memory locations that the user is

free to use as he wishes.

Memory Maps of different PICs are

different. Refer to the datasheets for the

appropriate data map

Examples:

1. MOVWF 01 : COPIES the value found in W to

 TMR0

2. MOVWF 05 : COPIES the value found in W to

 PORTA

3. MOVWF 0C : COPIES the value found in W to

 a GPR (location 0C)

4. MOVWF 32 : COPIES the value found in W to

 a GPR (location 32)

5. MOVWF 52 : WRONG, out of data memory

range of the PIC 16F84a (GPR range is from 0C-

4F and 8C to CF)

 MOVF: COPIES a value found in the data

memory to the working register OR to itself.

Therefore we expect a second operand to specify

whether the destination is the working register or

the register itself.

For now: a 0 means the W, a 1 means the register

itself.

Examples:

1. MOVF 05, 0 : copies the content of PORTA to the working register

2. MOVF 2D, 0 : copies the content of the GPR 2D the working register

3. MOVF 05, 1 : copies the content of PORTA to itself

4. MOVF 2D, 1 : copies the content of the GPR 2D to itself

Now we will simulate a program in MPLAB and check the results

In MPLAB write the following program:

Movlw 5 ; move the constant 5 to the working register

Movwf 01 ; copy the value 5 from working register to TMR0 (address 01)

Movlw 2 ; move the constant 2 to the working register

Movwf 0B ; copy the value 2 from working register to INTCON (address 0B)

Movf 01, 0 ; copy back the value 5 from TMR0 to working register

Nop ; this instruction does nothing, but it is important to write for now

End ; every program must have an END statement

After writing the above instructions we should build the project, do so by pressing build

An output window should show: BUILD SUCCEDDED

BUILD SUCCEED DOES NOT MEAN THAT YOUR PROGRAM IS CORRECT, IT SIMPLY MEANS THAT

THERE ARE NO SYNTAX ERRORS FOUND, SO WATCH OUT FOR ANY LOGICAL ERRORS YOU

MIGHT MAKE.

Notice that there are several warnings after building the file, warnings do not affect the execution of the

program but they are worth reading. This warning reads: “Found opcode in column 1”, column 1 is

reserved for labels; however, we have written instructions (opcode) instead thus the warning.

TO SOLVE THIS WARNING SIMPLY TYPE FEW BLANK SPACES BEFORE EACH INSTRUCTION OR PRESS

TAB

Preparing for simulation

Go to View Menu Watch

From the drop out menu choose the registers we want to

watch during simulation and click ADD SFR for each one

Add the following:

 WREG: working register

 TMR0

 INTCON

You should have the following:

Notice that the default format is in hexadecimal, to change it (if you need to) simply right-click on the

row Properties and choose the new format you wish.

From the Debugger Menu choose Select Tool then MPLAB SIM

Now new buttons will appear in the toolbar:

Step Into Reset

1. To begin the simulation, we will start by resetting the PIC; do so by pressing the yellow reset

button. A green arrow will appear next to the first instruction.

The green arrow means that the program counter is pointing to this instruction which has not

been executed yet.

Notice the status bar below:

Keep an eye on the value of the program counter (pc: initially 0), see how it changes as we

simulate the program

2. Press the “Step Into” button one at a time and check the Watch window each time an instruction

executes; keep pressing “Step Into” until you reach the NOP instruction then STOP.

Compare the results as seen in the Watch window with those expected.

The “END” directive

If you refer to the Appendix at the end of this experiment, you will notice that there is no end instruction
among the PIC 16 series instructions, so what is “END”?

The “END” command is a directive which tells the MPLAB IDE that we have finished our program. It has
nothing to do with neither the actual program nor the PIC.

The END should always be the last statement in your program
Anything which is written after the end command will not be executed and any variable names will be
undefined.

Making your program easier to understand: the “equ” and “include” directives

As you have just noticed, it is difficult to write, read, debug or understand programs while dealing with
memory addresses as numbers. Therefore, we will learn to use new directives to facilitate program
reading.

The “EQU” directive

The equate directive is used to assign labels to numeric values. They are used to DEFINE CONSTANTS or to
ASSIGN NAMES TO MEMORY ADDRESSES OR INDIVIDUAL BITS IN A REGISTER and then use the name
instead of the numeric address.

Timer0 equ 01
Intcon equ 0B
Workrg equ 0
Movlw 5 ; move the constant 5 to the working register

Movwf Timer0 ; copy the value 5 from working register to TMR0 (address 01)

Movlw 2 ; move the constant 2 to the working register

Movwf Intcon ; copy the value 2 from working register to INTCON (address 0B)

Movf Timer0, Workrg ; copy back the value 5 from TMR0 to working register

Nop ; this instruction does nothing, but it is important to write it for now

End

Notice how it is easier now to read and understand the program, you can directly know the actions

executed by the program without referring back to the memory map by simply giving each address a

name at the beginning of your program.

DIRECTIVES THEMSELVES ARE NOT CASE-SENSITIVE BUT THE LABELS YOU DEFINE ARE. SO YOU

MUST USE THE NAME AS YOU HAVE DEFINED IT SINCE IT IS CASE-SENSITIVE.

Directives

Directives are not instructions. They are assembler commands that appear in the source
code but are not usually translated directly into opcodes. They are used to control the
assembler: its input, output, and data allocation. They are not converted to machine code
(.hex file) and therefore not downloaded to the PIC.

As you have already seen, the GPRs in a memory map (lower part) do not have names as the SFRs
(Upper part), so it would be difficult to use their addresses each time we want to use them. Here,
the “equate” statement proves helpful.

Num1 equ 20 ;GPR @ location 20
Num2 equ 40 ;GPR @ location 40
Workrg equ 0
Movlw 5 ; move the constant 5 to the working register

Movwf Num1 ; copy the value 5 from working register to Num1 (address 20)

Movlw 2 ; move the constant 2 to the working register

Movwf Num2 ; copy the value 2 from working register to Num2 (address 40)

Movf Num1, Workrg ; copy back the value 5 from Num1 to working register

Nop ; this instruction does nothing, but it is important to write it for now

End

When simulating the above code, you need to add Num1, Num2 to the watch window, however,
since Num1 and Num2 are not SFRs but GPRs, you will not find them in the drop out menu of the
“Add SFR”, instead you will find them in the drop out menu of the “Add symbol”.

The “INCLUDE” directive

Suppose we are to write a huge program that uses all registers. It will be a tiresome task to define all
Special Function Registers (SFR) and bit names using “equate” statements. Therefore we use the include
directive. The include directive calls a file which has all the equate statements defined for you and ready to
use, its syntax is

#include “PXXXXXXX.inc” where XXXXXX is the PIC part number

Older version of include without #, still supported.

Example: #include “P16F84A.inc”

The only condition when using the include directive is to use the names as Microchip defined them which

are ALL CAPITAL LETTERS and AS WRITTEN IN THE DATA SHEET. If you don’t do so, the MPLAB will tell

you that the variable is undefined!

#include “P16F84A.inc”

Movlw 5 ; move the constant 5 to the working register

Movwf TMR0 ; copy the value 5 from working register to TMR0 (address 01)

Movlw 2 ; move the constant 2 to the working register

Movwf INTCON ; copy the value 2 from working register to INTCON (address 0B)

Movf TMR0, W ; copy back the value 5 from TMR0 to working register

Nop ; this instruction does nothing, but it is important to write it for now

End

The “Cblock” directive
You have learnt that you can assign GPR locations names using the equate statements to facilitate dealing

with them. Though this is correct, it is not recommended by Microchip as a good programming practice.

Instead you are instructed to use cblocks when defining and declaring GPRs. So then, what is the use of the

“equ” directive?

From now on, follow these two simple programming rules:

1. The “EQU” directive is used to define constants

2. The “cblock” is used to define variables in the data memory.

The cblock defines variables in sequential locations, see the following declaration

Cblock 0x35

 VarX

VarY

VarZ

endc

Here, VarX has the starting address of the cblock, which is 0x35, VarY has the sequential address 0x36 and

VarZ the address of 0x37

What if I want to define variable at locations which are not sequential, that is some addresses are at 0x25

others at 0x40?

Simply use another cblock statement, you can add as many cblock statements as you need

The Origin “org” directive

The origin directive is used to place the instruction which exactly comes after it at the location it
specifies.

Examples:

Org 0x00

Movlw 05 ;This instruction has address 0 in program memory

Addwf TMR0 ;This instruction has address 1 in program memory

Org 0x04 ;Program memory locations 2 and 3 are empty, skip to address 4 where it contains

Addlw 08 ;this instruction

Org 0x13 ;WRONG, org only takes even addresses

In This Course, Never Use Any Origin Directives Except For Org 0x00 And 0x04, Changing Instructions’

Locations In The Program Memory Can Lead To Numerous Errors.

The Concept of Bank Switching

Write, build and simulate the following program in your MPLAB editor. This program is very similar to the

ones discussed above but with a change of memory locations.

#include “P16F84A.inc”

Movlw 5 ; move the constant 5 to the working register

Movwf TRISA ; copy the value 5 from working register to TRISA (address 85)

Movlw 2 ; move the constant 2 to the working register

Movwf OPTION_REG ; copy 2 from working register to OPTION_REG (address 81)

Movf TRISA, W ; copy back the value 5 from TRISA to working register

Nop ; this instruction does nothing, but it is important to write it for now

End

After simulation, you will notice that both TRISA and OPTION_REG were not filled with the values
5 and 2 respectively! But why?

Notice that the memory map is divided into two columns, each column is called a bank, here we
have two banks: bank 0 and bank 1. In order to access bank 1, we have to switch to that bank first
and same for bank 0. But how do we make the switch?

Look at the details of the STATUS register in the figure below, there are two bits RP0 and RP1,
these bits control which bank we are in:

 If RP0 is 0 then we are in bank 0
 If RP0 is 1 then we are in bank 1

We can change RP0 by using the bcf/bsf instructions

 BCF STATUS, RP0 RP0 in STATUS is 0 switch to bank 0
 BSF STATUS, RP0 RP0 in STATUS is 1 switch to bank 1

BCF: Bit Clear File Register (makes a specified bit in a specified file register a 0)

BSF: Bit Set File Register (makes a specified bit in a specified file register a 1)

Try the program again with the following change and check the results:

#include “P16F84A.inc”

BSF STATUS, RP0

Movlw 5 ; move the constant 5 to the working register

Movwf TRISA ; copy the value 5 from working register to TRISA (address 85)

Movlw 2 ; move the constant 2 to the working register

Movwf OPTION_REG ; copy 2 from working register to OPTION_REG (address 81)

Movf TRISA, W ; copy back the value 5 from TRISA to working register

BCF STATUS, RP0

Nop ; this instruction does nothing, but it is important to write it for now

End

The “Banksel” directive

When using medium-range and high-end microcontrollers, it will be a hard task to check the memory map
for each register we will use. Therefore the BANKSEL directive is used instead to simplify this issue. This
directive is a command to the assembler and linker to generate bank selecting code to set the bank to the
bank containing the designated label

Example:
BANKSEL TRISA will be replaced by the assembler, which will automatically know which bank the register
is in and generate the appropriate bank selection instructions:

Bsf STATUS, RP0
Bcf STATUS, RP1

In the PIC16F877A, there are four banks; therefore you need two bits to make the switch between any of
them. An additional bit in the STATUS register is RP1, which is used to make the change between the
additional two banks.
One drawback of using BANKSEL is that it always generates two instructions even when the switch is
between bank0 and bank1 which only requires changing RP0. We could write the code above in the same
manner using Banksel

#include “P16F84A.inc”
Banksel TRISA
Movlw 5 ; move the constant 5 to the working register
Movwf TRISA ; copy the value 5 from working register to TRISA (address 85)
Movlw 2 ; move the constant 2 to the working register
Movwf OPTION_REG ; copy 2 from working register to OPTION_REG (address 81)
Movf TRISA, W ; copy back the value 5 from TRISA to working register
Banksel PORTA
Nop ; this instruction does nothing, but it is important to write it for now

End

Check the program memory window to see how BANKSEL is replaced in the above code and the difference

in between the two codes in this page.

13

FLAGS

The PIC 16 series has three indicator flags found in the STATUS register; they are the C, DC, and Z flags. See

the description below. Not all instructions affect the flags; some instructions affect some of the flags while

others affect all the flags. Refer to the Appendix at the end of this experiment and review which instructions

affect which flags.

The MOVLW and MOVWF do not affect any of the flags while the MOVF instruction affects the zero flag.

Copying the register to itself does make sense now because if the file has the value of zero the zero flag will

be one. Therefore the MOVF instruction is used to affect the zero flag and consequently know if a register

has the value of 0. (Suppose you are having a down counter and want to check if the result is zero or not)

14

Types of Logical and Arithmetic Instructions and Result Destination

The PIC16 series logical and arithmetic instructions are easy to understand by just reading the instruction,

for from the name you readily know what this instruction does. There are the ADD, SUB, AND, XOR, IOR

(the ordinary Inclusive OR). They only differ by their operands and the result destination. The following

table illustrates:

 Type I – Literal Type Type II – File Register Type

Syntax xxxLW k

where k is constant

xxxWF f, d

where f is file register and

d is the destination (F, W)

Instructions Addlw, sublw, andlw, iorlw and

xorlw

Addwf, subwf, andwf, iorwf, xorwf

Operands 1. A literal (given by the

instruction)

2. The working register

1. A file register in the data

memory (either SFR or GPR)

2. The working register

Result destination The working register only Two Options:

1. W: the Working register

2. F: The same File given in the

instruction

How does it work? W = L operation W

F = F operation W

The value of F is overwritten by the

result, original value lost

W = F operation W

The value of F is the original value,

result stored in working register

instead

 The order is important in the subtract operation

Examples

(assuming you are

using the include

statement and

appropriate equ

statements for

defining GPRs)

xorlw 0BB

W = W ^ 0BB

sublw .85

W = 85d – W

Andwf TMR0, W

W = TMR0 & W

addwf NUM1, F

NUM1 = NUM1 + W

Subwf PORTA, F

PORTA = PORTA - W

 Notice that in subtraction, the W has the minus sign

Many other instructions of the PIC16 series instruction set are of Type II; refer back to the Appendix at the

end of this experiment for study.

15

Starting Up with basic programs

Program One: Fibonacci Series Generator

In mathematics, the Fibonacci numbers are the following sequence of numbers:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89

The first two Fibonacci numbers are 0 and 1, and each remaining number is the sum of the previous two

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

include "p16f84a.inc"

Fib0 equ 20 ;At the end of the program the Fibonacci series numbers from 0 to 5 will

Fib1 equ 21 ;be stored in Fib0:Fib5

Fib2 equ 22

Fib3 equ 23

Fib4 equ 24

Fib5 equ 25

Clrw ;This instruction clears the working register, W = 0

clrf Fib0 ;The clrf instruction clears a file register specified, here Fib0 = 0

movf Fib0, w ;initializing Fib1 to the value 1 by adding 1 to Fib0 and storing it in Fib1

addlw 1

movwf Fib1

movf Fib0, W ; Fib2 = Fib1 + Fib0

addwf Fib1, W

movwf Fib2

movf Fib1, W ; Fib3 = Fib2 + Fib1

addwf Fib2, W

movwf Fib3

movf Fib2, W ; Fib4 = Fib3 + Fib2

addwf Fib3, W

movwf Fib4

movf Fib3, W ; Fib5 = Fib4 + Fib3

addwf Fib4, W

movwf Fib5

nop

end

1. Start a new MPLAB session, add the file example1.asm to your project

2. Build the project

3. Select Debugger Select Tool MPLAB SIM

4. Add the necessary variables and the working register to the watch window (remember that user

defined variables are found under the “Add Symbol” list)

16

5. Simulate the program step by step, analyze and study the function of each instruction. Stop at the

“nop” instruction

6. Study the comments and compare them to the results at each stage and after executing the

instructions

7. As you simulate your code, keep an eye on the MPLAB status bar below (the results shown in this

status bar are not related to the program, they are for demo purposes only)

The status bar below allows you to instantly check the value of the flags after each instruction is executed

In the figure above, the flags are z, DC, C

 A capital letter means that the value of the flag is one; meanwhile a small letter means a value of

zero. In this case, the result is not zero; however, digit carry and a carry are present.

Another faster method of simulation: Run and break points

Many times you will need to make some changes to your code, additions, omissions and bug fixes. It is not

then flexible to step into your code step by step to observe the changes you have made especially when

your program is large. It would be a good idea to execute your code all at once or up to a certain point and

then read the results from the watch window.

Now suppose we want to execute the Fibonacci series code at once - to do so, follows these steps:

1. Double click on the “nop” instruction (line 30), a red circle with a letter “B” inside is shown to the

left of the instruction. This is called a breakpoint. Breakpoints instruct the simulator to stop code

execution at this point. All instructions before the breakpoint are only executed

2a. Now press the run button

Run Animate

2b. Alternatively, you can instruct the IDE to

automatically step into the code an

instruction at a time by simply pressing

“animate”

You can control the speed of simulation as

follows:

1. Debugger Settings Animation/ Real time Updates

2. Drag the slider to set the speed of simulation you find convenient

17

Program Memory Space Usage

Though we have written about 31 lines in the editor, the total number of program memory space occupied

is far less, remember that directives are not instructions and that they are not downloaded to the target

microcontroller. To get an approximate idea of how much space does the program occupy: Select View

Program Memory Symbolic tab

Note that the last instruction

written is “nop” (end is a directive).

The total space occupied is only 18

memory locations

The “opcode” field shows the actual

machine code of each instruction

which is downloaded to the PIC

Program Two: Implementing the function Result = (X + Y) Z

This example is quite an easy one, initially the variable X, Y, Z are loaded with the values which

make the truth table

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

include "p16F84A.inc"

cblock 0x25

 VarX

 VarY

 VarZ

 Result

endc

 org 0x00

Main ;loading the truth table

 movlw B'01010101' ;ZYX Result

 movwf VarX ;000 0 (bit7_VarZ, bit7_VarY, bit7_VarX)

 movlw B'00110011' ;001 1 (bit6_VarZ, bit6_VarY, bit6_VarX)

 movwf VarY ;010 1 .

 movlw B'00001111' ;011 1 .

 movwf VarZ ;100 1 .

18

18

19

20

21

22

23

24

25

26

 ;101 0 .

 ;110 0 .

 ;111 0 (bit0_VarZ, bit0_VarY, bit0_VarX)

 movf VarX, w

 iorwf VarY, w

 xorwf VarZ, w

 movwf Result

 nop

 end

1. Start a new MPLAB session, add the file example2.asm to your project

2. Build the project

3. Select Debugger Select Tool MPLAB SIM

4. Add the necessary variables and the working register to the watch window (remember that user

defined variables are found under the “Add Symbol” list)

5. Simulate the program step by step, analyze and study the function of each instruction. Stop at the

“nop” instruction

6. Study the comments and compare them to the results at each stage and after executing the

instructions

19

Appendix A: Instruction Listing

20

Appendix B: MPLAB Tools

Another method to view the content of data memory is through the File Registers menu:

 Select View Menu File Registers

After building the Example1.asm codes, start looking at address 20

(which in our code corresponds to Fib0), to the right you will see the

adjacent file registers from 21 to 2F.

Observe that after code execution, these memory locations are filed

with Fibonacci series value as anticipated.

1

University of Jordan

Faculty of Engineering and Technology

Department of Computer Engineering

Embedded Systems Laboratory 0907334

Objectives

The main objectives of this experiment are to familiarize you with:

 Program flow control instructions

 Conditional and repetition structures

 The concept of modular programming

 Macros and Subroutines

2

Experiment 2: Instruction Set Analysis 2

& Modular Programming Techniques

2

Pre-lab requirements

Before starting this experiment, you should have already familiarized yourself with MPLAB software and how to

create, simulate and debug a project.

Introducing conditionals

The PIC 16series instruction set has four instructions which implement a sort of conditional statement: btfsc ,

btfss, decfsz and incfsz instructions.

1. btfsc checks for the condition that a bit is clear: 0 (Bit Test File, Skip if Clear)

2. btfss checks for the condition that a bit is set one: 1 (Bit Test File, Skip if Set)

3. Review decfsz and incfsz functions from the datasheet

Example 1: movlw 0x09

btfsc PORTA, 0

movwf Num1

movwf Num2

The above instruction tests bit 0 of PORTA and checks whether it is clear (0) or not

 If it is clear (0), the program will skip “movwf Num1” and will only execute “movwf Num2”

Only Num2 has the value 0x09

 If it is set (1), it will not skip but execute “movwf Num1” and then proceed to “movwf Num2”

In the end, both Num1 and Num2 have the value of 0x09

You have seen above that if the condition fails, the code will continue normally and both instructions will be

executed.

Example 2: movlw 0x09

btfsc PORTA, 0

goto firstcondition

goto secondCondition

Proceed

 …….. your remaining code

firstcondition

movwf Num1

goto Proceed

secondCondition

movwf Num2

goto Proceed

Example 2 is basically the same as Example 1 with one main difference:

 If it is clear (0), the program will skip “goto firstcondition” and will only execute “goto

secondCondition”, the program will then execute “movwf Num2” and then “gotoProceed”

Only Num2 has the value 0x09

 If it is set (1), it will not skip but execute “goto firstcondition”, the program will then execute

“movwf Num1” and then “gotoProceed”

Only Num1has the value 0x09

Firstcondition, secondCondition, and

Proceed are called Labels, Labels are

used to give names for a specific block

of instructions and are referred to as

shown above to change the program

execution order.

3

Conditional using Subtraction and how the Carry/Borrow flag is affected?

The Carry concept is easy when dealing with addition operations but it differs in borrow operations
according to Microchip implementation.

Carry is a physical flag; you will find it in the STATUS register,
Borrow is not implemented; it is in your mind
In the following examples we will show the status of the Carry/Borrow flag and how it differs between
addition and subtraction operations:

Ex1) 99-66

 10011001 –
 01100110

 10011001+
 10011010 2’s complement of 66
100110011

There is carry (C = 1), since Borrow is the complement
of Carry, then Borrow is 0 (No borrow) which is
correct

Ex 2) 66 – 99

 01100110-
 10011001

 01100110+
 01100111
011001101

There is no carry (C = 0), since Borrow is the
complement of Carry, then Borrow is 1 (There is
borrow) which is correct

Program One: Check if a value is greater or smaller than 10, if greater Result will have the ASCII value G, if

smaller, it will have the ASCII value S.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

include "p16F84A.inc"

cblock 0x25

 testNum

 Result

endc

 org 0x00

Main

 movf testNum, W

 sublw .10 ;10d - testNum

 btfss STATUS, C

 goto Greater ;C = 0, that's B = 1, then testNum > 10

 goto Smaller ;C = 1, that's B = 0, then testNum < 10

Greater

 movlw A'G'

 movwf Result

 goto Finish

Smaller

 movlw A'S'

 movwf Result

Finish

 nop

 end

Expect no

borrow since

99 > 66

Expect

borrow since

66 < 99

4

1. Start a new MPLAB session, add the file example3.asm to your project

2. Build the project

3. Select Debugger Select Tool MPLAB SIM

4. Add the necessary variables and the working register to the watch window (remember that user defined

variables are found under the “Add Symbol” list)

5. Enter values into testNum, simulate the program step by step, concentrate on what happens at lines10-12

6. Keep an eye on the Flags at the status bar below while simulating the code

7. Enter other values lesser and greater and observe how the code behaves

 What is the value stored in Result when testNum = 10? Is this correct? Can you think of a solution?

Program Two: Counting the Number of Ones in a Register’s Lower Nibble

 Introducing simple conditional statements

This program will take a hexadecimal number as an input in the lower nibbles (bits 3:0) in a register called

testNum.The number will be masked by anding it with 0F, (remember that 0 & Anything = 0, while 1 & anything

will remain the same), we used masking because if the user accidentally wrote a number in the higher nibble

(bits 3:0), it will be forced to zero. The number in the lower nibble will not be affected (anded with 1). The

masked result will be saved in a register called tempNum.

Now tempNum will be rotated to the right, bit0 (least significant bit) will move to the C flag of the STATUS

register after rotation. Then it will be tested whether it 0 or 1. If it is 1, the numOfOnes register will be

incremented. Else the program proceeds. This operation will continue for 4 times (because the number of bits in

the lower nibble is 4)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

 include "p16f84a.inc"

cblock 0x20

testNum ;GPR @ location 20

tempNum ;GPR @ location 21

endc

cblock 0x30

numOfOnes ;GPR @ location 30

endc

org 0x00

clrf numOfOnes ;Initially number of ones is 0

movf testNum, W ;Since we only need to test the number of ones in the lower nibble, we

 ;mask them by 0F (preserve lower nibble and discard higher nibble)

andlw 0x0F ;in case a user enters a number in the upper digit. Save masked result

movwf tempNum ;in tempNum

rrf tempNum, F ;rotate tempNum to the right through carry, that is the least

 ;significant bit of tempNum (bit0) goes into the C flag of the

 ;STATUS register, while the old value of C flag goes into bit 7 of

 ;tempNum

Byte 8 bits

7 6 5 4 3 2 1 0

Higher 4 bits Lower 4 bits

Upper Nibble Lower Nibble

5

22

23

24

25

26

27

28

29

30

31

32

33

34

btfsc STATUS, C ;tests the C flag, if it has the value of 1, increment number of ones and

incf numOfOnes, F;proceed, else proceed without incrementing

rrf tempNum, F

btfsc STATUS, C ;Same as above

incf numOfOnes, F

rrf tempNum, F

btfsc STATUS, C

incf numOfOnes, F

rrf tempNum, F

btfsc STATUS, C

incf numOfOnes, F

nop

end

As you can see in the above program, we did not write instructions to load testNum with an initial value to test;

this code is general and can take any input. So, how do you test this program with general input?

After building your project, adding variables to the watch window and selecting MPLAB SIM simulation tool,

simply double click on testNum in the watch window and fill in the value you want. Then Run the program.

Change the value of testNum and re-run the program again, check if numOfOnes hold the correct value.

Coding for efficiency: The repetition structures

You have observed in the code above that instructions from 18 to 32 are simply the same instructions repeated

over and over four times for each bit tested.

Now we will introduce the repetition structures, similar in function to the “for” and “while” loops you have

learnt in high level languages.

Program Three: Counting the Number of Ones in a Register’s Lower Nibble

 Using a Repetition Structure

1

2

3

4

5

6

7

8

9

10

11

12

13

14

 include "p16f84a.inc"

 cblock 0x20

 testNum

 tempNum

 endc

 cblock 0x30

 numOfOnes

 counter ;since repetition structures require a counter, one is declared

 endc

 org 0x00

 clrf numOfOnes

 movlw 0x04 ;counter is initialized by 4, the number of the bits to be tested

6

15

16

17

18

19

20

21

22

23

24

25

26

 movwf counter

 movf testNum, W

 andlw 0x0F

 movwf tempNum

Again

 rrf tempNum, F

 btfsc STATUS, C

 incf numOfOnes, F

 decfsz counter, F ; The contents of register counter are decremented then test :
 goto Again ; if the counter reaches 0, it will skip to “nop” and program ends

 nop ; if the counter is > 0, it will repeat “goto Again”

 end

Introducing the Concept of Modular Programming

Modular programming is a software design technique in which the software is divided into several separate

parts, where each part accomplishes a certain independent function. This “Divide and Conquer” approach allows

for easier program development, debugging as well as easier future maintenance and upgrade.

Modular programming is like writing C++ or Java functions, where you can use the function many times only

differing in the parameters. Two structures which are similar to functions are Macros and Subroutines which

are used to implement modular programming.

Subroutines

 Subroutines are the closest equivalent to functions

 Subroutines start with a Label giving them a name and end with the instruction return

Examples:

doMath

Instruction 1

Instruction 2

 .

 .

 Instruction n

return

Process

Instruction 1

Instruction 2

 .

 .

Calculate

 Instruction 7

 Instruction 8

return

This is still one subroutine, no matter the number

of labels in between

 Subroutines can be written anywhere in the program after the org and before the end directives

 Subroutines are used in the following way: Call subroutineName

 Subroutines are stored once in the program memory, each time they are used, they are executed from

that location

7

 Subroutines alter the flow of the program, thus they affect the stack

Example:

Main

Instruction1

Instruction2

Call doMath

Instruction4

Instruction5

Nop

Nop

doMath

Instruction35

Instruction36

Instruction37

return

So what is the stack and how is it used?

Initially the program executes sequentially; instructions 1 then 2 then 3, when the instruction Call doMath is

executed, the program will no longer execute sequentially, instead it will start executing Instructions35, then 36

then 37, when it executes return, what will happen? Where will it go and what instruction will be executed?

When the Call doMath instruction is executed, the address of the next instruction (which as you should already

know id found in the program counter) Instruction4 is saved in a special memory called the stack. When the

return instruction is executed, it reads the last address saved in the stack, which is the address of Instruction4

and then continues from there.

----Read section 2.4.1 of the P16F84A datasheet for more information regarding the stack----

Macros

Macros are declared in the following way (similar to the declaration of cblocks)

macroName macro

Instruction 1

Instruction 2

 .

 .

 Instruction n

endm

 Macros should be declared before writing the code instructions. It is not recommended to declare macros

in the middle of your program.

 Macros are used by only writing their name: macroName

 Each time you use a macro, it will be replaced by its body, refer to the example below. Therefore, the

program will execute sequentially, the flow of the program will not change. The Stack is not affected

8

Programs Four and Five

The following simple program demonstrates the differences between using macros and subroutines. They

essentially perform the same operation: Num2 = Num1 + Num2

 Example4 using Macro Example5 using Subroutine

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

include "p16f84a.inc"

cblock 0x30

 Num1

 Num2

endc

Summation macro

 movf Num1, W ;Macro Body

 addwf Num2, F

 endm

 org 0x00

Main

 Movlw 4

 Movwf Num1

 Movlw 8

 Movwf Num2

 Summation

 Movlw 1

 Movwf Num1

 Movlw 9

 Movwf Num2

 Summation

finish

 nop

 end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

include "p16f84a.inc"

cblock 0x30

 Num1

 Num2

endc

 org 0x00

Main

 Movlw 4

 Movwf Num1

 Movlw 8

 Movwf Num2

 Call Summation

 Movlw 1

 Movwf Num1

 Movlw 9

 Movwf Num2

 Call Summation

 goto finish

Summation

 movf Num1, W

 addwf Num2, F

 return

finish

 nop

 end

Analyzing the two programs and highlighting the differences

For both applications, go to View Program Memory, let’s see the differences:

9

Figure 1. The example using macros

In the program memory window, notice that the macro name is replaced by its body. The instructions movf

Num1, W and addwf Num2, F replace the macro name @ lines 19 and 24. Using macros clearly affects the space

used by the program as it increases due to code copy.

 Figure 2. The example using subroutines

Now notice that the subroutine is only stored once in the program memory. No code replacement is present.

You can also observe from the program memory that the program utilizing the macro executes sequentially from

start to end, while the second program alters the program flow.

For Program Two, do the following:

10

1. After building the project, go to View Hardware Stack

2. Simulate the program up to

the point when the green

arrow points to the first Call

Summation instruction.

3. Look at the status bar below

your MPLAB screen, what is

the value of pc (program

counter) (Note that the

program counter has the

address of the next

instruction to be executed, that is Call Summation, Remember the instruction the arrow points to is not

yet executed)

4. Now execute (use Single step) the Call Summation instruction.

 After doing step4, what is the address of PC?

 What is now stored at the TOS (Top of Stack)? (Refer to the Hardware Stack window)

 How many levels of stack are used?

5. Now, continue simulating the program (subroutine). After executing the return instruction

 What is the address of PC?

 What is now stored at the TOS?

 How many levels of stack are used?

6. Repeat the steps above for the second Call Summation instruction?

The operation of saving the address on the stack - and any other variables - when calling a subroutine

and later retrieving the address – and variables if any - when the subroutine finishes executing is called

context switching.

Important Notes:

1. Assuming both a macro and a subroutine has the exact same body (same instructions), the execution of

the subroutine takes slightly more time due to context switching.

2. You can use macro inside a macro, call a subroutine inside a subroutine, use a macro inside a subroutine

and call a subroutine inside a macro

Further Simulation Techniques: Step Over and Step Out

“Step Over” “Step Out

Step Over is used when you want to execute the subroutine as a whole unit without seeing how each individual

instruction is executed. It is usually used when you know that that the subroutine executes correctly and you are

only interested to see the results.

1. Simulate program two up to the point when the green arrow points to the first Call Summation

instruction.

2. Press Step Over, observe how the simulation runs

11

Step Out resembles Step Over, the only difference is that you use it when you are already inside the

subroutine and you want to continue executing the subroutine as a whole unit without seeing how each

remaining individual instruction is executed.

1. Simulate the program up to the point when the green arrow points to the first instruction inside the

Summation subroutine: movf Num1, W

3. Press Step Out, , observe how the simulation runs

In both cases, the instruction are executed but you only see the end result of the subroutine

Time Calculation

To calculate the total time spent in executing the whole program or a certain subroutine, do the following:

1. Set the oscillator (external clock speed) as follows:

2. Set the processor frequency to 4MHz

This means that each instruction cycle time is 4MHz/4 = 1MHz and T = 1/f = 1/MHz = 1µs

3. Now set breakpoints at the beginning and end of the code you want to calculate time for

4. Go to Debugger Stop Watch

12

5. Now run the program, when the pointer stops at the first breakpoint Press Zero

6. Run the program again. When the pointer reaches the second breakpoint, read the time from the

stopwatch. This is the time spent in executing the code between the breakpoints.

Modular Programming

How to think Modular Programming?

Initially, you will have to read and analyze the problem statement carefully, based on this you will have to

1. Divide the problem into several separate tasks,

2. Look for similar required functionality

Non Modular and Modular Programming Approachs: Read the following problem statement

A PIC microcontroller will take as an input two sensor readings and store them in Num1 and Num2, it will then

process the values and multiply both by 5 and store them in Num1_5, and Num2_5. At a later stage, the program will

multiply Num1 and Num2 by 25 and store them in Num1_25 and Num2_25 respectively.

Analyzing the problem above, it is clear that it has the following functionality:

 Multiply Num1 by 5

 Multiply Num2 by 5

 Multiply Num1 by 25

 Multiply Num2 by 25

13

As you already know, we do not have a multiply instruction in the PIC 16F84A instruction set, so we do it by

addition since:

2 x 3 = 2 + 2 + 2 ; add 2 three times

7 x 9 = 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 ; add 7 nine times

So we write a loop as follows (example 4 x 9, add four nines), initially one nine is placed in W then we construct a

loop to add the remaining 8 nines:

movlw .8 ; because we put the first 4 in W, then we add the remaining 8 fours to it

 movwf counter

 movf temp, w ; 1st four in W

add

 addwf temp, w

 decfsz counter, f ; decrement counter, if not zero keep adding, else continue

 goto add

; continue with code

A Non Modular Programming Approach Modular Programming Approach

Write multiply code for each operation above

Write one “Multiply by 5” code, use it two times

Write one “Multiply by 25” code, use it two

times

Note that you do not need to write the “Multiply

by 25” code from scratch, since 25 is 5x5, you

can simply use “Multiply by 5” two times!

 Code lines: 38 Code lines: 27

get Num1

Write whole code to multiply Num1 by 5

Store in Num1_5

get Num2

Write whole code to multiply Num2 by 5

Store in Num2_5

get Num1

Write whole code to multiply Num1 by 25

Store in Num1_25

get Num2

Write whole code to multiply Num2 by2 5

Store in Num2_25

goto finish

nop

1

7

1

1

7

1

1

7

1

1

7

1

1

1

get Num1

call “multiply by 5” function

Store in Num1_5

get Num2

call “multiply by 5” function

Store in Num2_5

get Num1

call “multiply by 25” function

Store in Num1_25

get Num2

call “multiply by 25” function

Store in Num2_25

goto finish

nop

A single Multiply by 5 function

A single Multiply by 5 function

1

1

1

1

1

1

1

1

1

1

1

1

1

1

8

5

14

include "p16f84a.inc"

cblock 0x30

 Num1

 Num2

 Num1_5

 Num2_5

 Num1_25

 Num2_25

 temp

 counter

endc

 org 0x00

Main

 movf Num1, w ;Num1 x 5

 movwf temp

 movlw .4

 movwf counter

 movf temp, w

add1

 addwf temp, w

 decfsz counter, f

 goto add1

 movwf Num1_5

 movf Num2, w ;Num2 x 5

 movwf temp

 movlw .4

 movwf counter

 movf temp, w

add2

 addwf temp, w

 decfsz counter, f

 goto add2

 movwf Num2_5

 movf Num1, w ;Num1 x 25

 movwf temp

 movlw .24

 movwf counter

 movf temp, w

add3

 addwf temp, w

 decfsz counter, f

 goto add3

include "p16f84a.inc"

cblock 0x30

 Num1

 Num2

 Num1_5

 Num2_5

 Num1_25

 Num2_25

 temp

 counter

endc

 org 0x00

Main

 movf Num1, w ;Num1 x 5

 call Mul5

 movwf Num1_5

 movf Num2, w ;Num2 x 5

 call Mul5

 movwf Num2_5

 movf Num1, w ;Num1 x 25

 call Mul25

 movwf Num1_25

 movf Num2, w ;Num2 x 25

 call Mul25

 movwf Num2_25

 goto finish

Mul5

 movwf temp

 movlw .4

 movwf counter

 movf temp, w

add

 addwf temp, w

 decfsz counter, f

 goto add

 return

Mul25

 movwf temp

 call Mul5

 movwf temp

15

 movwf Num1_25

 movf Num2, w ;Num2 x 25

 movwf temp

 movlw .24

 movwf counter

 movf temp, w

add4

 addwf temp, w

 decfsz counter, f

 goto add4

 movwf Num2_25

 goto finish

finish

 nop

 end

 call Mul5

 return

finish

 nop

 end

Notes on passing parameters to subroutines

Subroutines and macros are general codes; they work on many variables and generate results. So how do we tell

the macro/subroutine that we want to work on this specific variable?

We have two approaches:

Place the input at the working register

Take the output from the working register

Example:

Main

 Movlw 03 ;input to W

 Call MUL_by4

 Movwf Result1 ;output from W

 Movlw 07 ;input to W

 Call MUL_by4

 Movwf Result2 ;output from W

 Nop

 .

 .

MUL_by4

 Movwf temp

 Rlf temp,F

 Rlf temp, F

 Movf temp, W ;place result in W

 Return

Store the input(s) in external variables

Load the output(s) from external variables

Example:

 Movf Num1, W ;load Num with Num1

 Movwf Num

 Call MUL_by4

 Movf Result, W ;read the result and store

 Movwf Result1 ;it in Result1

 Movf Num2, W ;load Num with Num2

 Movwf Num

 Call MUL_by4

 Movf Result, W ;read the result and store

 Movwf Result2 ;it in Result2

MUL_by4

 Rlf Num,F

 Rlf Num, W

 Movwf Result ;place result in W

 Return

16

In this approach, the MUL_by4 subroutine takes the

input from W (movwf), processes it then places the

result back in W. Notice that we initially load W by

the numbers we work on (here 03 and 07) then we

take their values from W and save them in Result1

and Result2 respectively

In this approach the MUL_by4 subroutine expects to

find the input in Num and saves the output in Result.

Therefore, before calling the subroutine we load

Num by the value we want (here Num1) and then

take the value from Result and save it in Result1.

The same is repeated for Num2

This approach is useful when the subroutine/macro

has only one input and one output

This approach is useful when the subroutine/macro

takes many inputs and produces multiple outputs

Special types of subroutines: Look up tables

Look up tables are a special type of subroutines which are used to retrieve values depending on the input they

receive. They are invoked in the same as any subroutine: Call tableName

They work on the basis that they change the program counter value and therefore alter the flow of instruction

execution

The retlw instruction is a return instruction with the benefit that it returns a value in W when it is executed.

Syntax:

lookUpTableName

addwf PCL, F ;add the number found in the program counter to PCL (Program counter)

 nop

 retlw Value ;if W has 1, execute this

retlw Value ;if W has 2, execute this

retlw Value

…

retlw Value

Value can be in any format: decimal, hexadecimal, octal, binary and ASCII. It depends on the application

you want to use this look-up table in.

17

Program Six: Displaying the 26 English Alphabets

This program works as follows:

Counter is loaded with the number 1 because we want to get the first letter of the alphabet, when we call the

look-up table, it will retrieve the letter ‘A’. The counter is incremented by 1 and then checked if we have reached

the 26th letter of the alphabet (27 – the initial 1), if not we proceed to display the second letter ‘B’ and the third ‘C’

and so on. When we have displayed all the alphabets, counter will have the value 27 after which the program

exits.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

include "p16f84a.inc"

cblock 0x25

 counter ;holds the number of Alphabet displayed

 Value ;holds the alphabet value

endc

 org 0x00

Main

 movlw 1 ;Initially no alphabet is displayed

 movwf counter

Loop

 movf counter, W

 call Alphabet ;display Alphabet

 movwf Value

 incf counter, F ;Each time, increment the counter by 1

 movf counter, w ;if counter reaches 27, exit loop else continue

 sublw .27

 btfss STATUS, Z

 goto Loop

 goto finish

Alphabet

 addwf PCL, F

 nop

 retlw 'A'

 retlw 'B'

 retlw 'C'

 retlw 'D'

 retlw 'E'

 .

 .

 retlw 'Z'

finish

 nop

 end

1. Complete the look-up table above with the missing alphabet

2. Add both counter and value to the watch window.

3. Place a breakpoint @ instruction 14: incf counter, F

4. Run the program, keep pressing run and observe the values of the variables in the Watch window

18

Appendix A: Documenting your program

It is a good programming practice to document your program in order to make it easier for you or others to read
and understand it. For that reason we use comments. A proper way of documenting your code is to write a
functional comment, which is a comment that describes the function of one or a set of instructions. Comments
are defined after a semicolon (;) and are not read by MPLAB IDE

BSF STATUS, RP0
; Switch to Bank 1 Good comment √
; Set the RP0 bit in the Status Register to 1 Bad Comment, no new added info X

How to professionally document your program?

At the beginning of your program, you are encouraged to add the following header which gives an insight to your
code, its description, creator, version, date of last revision, etc… Most importantly, it is encouraged to document
the necessary connections and classify them as input/output.

;**

; * Program name: Example Program

; * Program description: This program …….

; *

; * Program version: 1.0

; * Created by Embedded lab engineers

; * Date Created: September 1st, 2008

; * Date Last Revised: September 16th, 2008

;**

; * Inputs:

; * Switch 0 (Emergency) to RB0 as interrupt

; * Switch 1 (Start Motor) to RB1

; * Switch 2 (Stop Motor) to RB2

; * Switch 3 (LCD On) to RB3

; * Outputs:

; * RB4 to Motor

;* RB5 to Green LED (Circuit is powered on)

;**

1. Your code declarations go here: includes, equates, cblocks, macros, origin, etc…

2. Your code goes here…

3. When using subroutines/macros, it is advised to add a header like this one before each to properly

document and explain the function of the respected subroutine/macro.

;**

;* Subroutine Name: ExampleSub

;* Function: This subroutine multiplies the value found in the working register by 16

;* Input: Working register

;* Output: Working register * 16

;***************************************

19

Appendix B: Instruction Listing

1

University of Jordan

Faculty of Engineering and Technology

Department of Computer Engineering

Embedded Systems Laboratory 0907334

Objectives

 Empowering students with logical and analytical skills to solve real life system design

problems

 To become familiar with the process of system requirement analysis and definition,

system and subsystem design, flow analysis and flowchart design, software design and

optimization

 Stressing software and hardware co-design techniques by introducing the Proteus IDE

package

 Written by Eng. Enas Jaara and Eng. Ashraf Suyyagh |

3

Experiment 3: Basic
Embedded System Analysis

and Design

2

Starting-Up System Design

When we attempt to design a system that is required to perform complex tasks, it is essential that one

thinks about the design flow and establish an overall system design before immediately jumping into

implementation and coding in order for the program be written flawlessly and smoothly and the system

functions correctly. In this way you don't waste time writing a flawed incomplete program, or which

addresses the wrong problem or which is missing some flow scenarios.

A well-established diagramming technique is the flow chart which tracks down system execution flow.

A flowchart is a schematic representation of an algorithm, showing the steps as different shapes, and

their order by connecting them with unidirectional arrows. Flowcharts are used in designing or

documenting programs. As programs get more complex, flowcharts help us follow and maintain the

program flow. This makes a program easier to write, read, and understand. Other techniques used are

state machines which are not covered in this course.

Complex systems need be broken into smaller pieces where each carries out few simple related tasks of

the overall system. The system is thus built from these simple subsystems. One need only care about

how these subsystems interface with each other. Subroutines allow the programmer to divide the

program into smaller parts which are easier to code. In system design methodology, this is called the

“Divide and Conquer” approach.

The basic steps in system design are:

Step 1: Requirements Definition

1. Reading the problem statement for what is needed to do, divide if it is complex.

2. What do I need to solve? Should I do it in software or hardware …

3. Determine the inputs and outputs for the hardware.

Step 2: System and Subsystem Design

4. Partition overall architecture into appropriate sub-systems.

5. Draw a detailed flowchart for each sub-systems

Step 3: Implementation

6. Translate flowcharts into code

7. Integrate subsystem into one code/design

Step 4: System Testing and Debugging

8. Run the program/hardware and see if it works correctly. If not, attempt to fix the program by

reviewing the above steps and refining your design along with it

The above steps prove essential as programs get harder and larger. Next we will present a real life

example from the industrial automation field.

Example – An Industrial Filling Machine

Problem Statement

We are to design an embedded system which controls a filling machine that works as follows:

Empty bottles move on a conveyer belt, when a bottle is detected, the conveyor belt stops, a

filling machine starts working for a specified period of time after which the filling machine

stops. The total number of filled bottles is increased by one and shown on a common cathode

7-Segments display, the conveyor belt starts again and the machine does the same thing for the

next bottle and so on. When the total number of bottles reaches nine the machine stops for

3

manual packaging. Meanwhile, one LED lights on an 8-LED-row and moves back and forth.

The conveyor belt does not start again until the resume button is pressed. Moreover, the LED

array turns off! See the figure on the next page for the machine layout:

or

A Typical Filling Machine

Step1: Requirements Definition and Analysis

Now we will analyze the problem statement above and determine the required hardware and

their role as input or output.

Output means a signal need be sent from the PIC to external hardware for control purposes.

Input means a signal is received from external hardware into the PIC for processing. Processing

means a certain code which does the job is required; this subroutine is internal processing and

doesn’t interact with the outside world!

Empty bottles move on a conveyer belt, when a bottle is detected, the conveyor belt stops

 There is a motor which controls the conveyor: “conveyor motor”. Output

 There is a sensor which detects the presence of a bottle: “bottle sensor”. Input

A filling machine starts working for a specified period of time after which the filling machine

stops

 There is a pump/motor which is turned on/off to fill the bottle: “filling motor”. Output

 We need a mechanism to calculate this time period. Processing

4

The total number of filled bottles is increased by one and shown on a common cathode 7-

Segments display

 Clearly we need some sort of a counter. Memory location (GPR) reserved

 We need to output the value of this counter to a 7-segment display. Output

The conveyor belt starts again and the machine does the same thing for the next bottle and so on.

When the total number of bottles reaches nine the machine stops for manual packaging.

 Continuously check for counter value if it reaches 9. Processing

Meanwhile, one LED lights on an 8-LED-row and moves back and forth. The conveyor belt does

not start again until the resume button is pressed. Moreover, the LED array turns off!

 We need a code to control the LED lights. Output

 We need a mechanism to check for the resume button key press. Input

As you have seen above, we need to interact with external components; outputs like the

motors, 7-Segments and the LEDs, as well as inputs from sensors or switches. Almost any

embedded system needs to transfer digital data between its CPU and the outside world. This

transfer achieved through input /output ports.

A quick look to the 16F84A or 16F877A memory maps will reveal multiple I/O ports: PORTA

and PORTB for the 16F84A, and the additional PORTC, PORTD and PORTE for the 16F877A.

Each port has its own TRISx Register which controls whether this PORTx will be an input port,

output port, or a combination of both (individual bits control).

PIC microcontrollers’ ports are general-

purpose bi-directional digital ports. The state

of TRISx Register controls the direction of the

PORTx bits. A logic one in a bit position

configures the PIC to act as an input and if it

has a zero to act as an output. However, a

pin can only act as either input or output at

any one time but not simultaneously. This

means that each pin has a distinct direction

state.

Ports A and E have a special configuration.

PORTA pins are multiplexed with analog inputs
for the A/D converters. The operation of each pin is
selected by clearing/setting the appropriate control

bits in the ADCON1.

Instructions needed to configure all PORTA
and E pins as general digital I/O pins :

BANKSEL ADCON1

MOVLW 06H ;set PORTA as general

 MOVWF ADCON1 ;Digital I/O PORT

5

Examples:

Movlw 0x0F

Movwf TRISB

Clrf TRISC Clrf TRISD

Comf TRISD, F

Movlw B’00110011’

Movwf TRISB

The high nibble of

PORTB is output, low

nibble is input

Whole PORTC as output Whole PORTD as input Bits 2, 3, 6, 7 as output

Bits 0, 1, 4, 5 as input

How to decide whether microcontroller’s ports must be configured as inputs or outputs?

Input ports “Get Data” from the outside world into the microcontroller while output
ports “Send Data” to the outside world.

 LEDs, 7-Segment displays, motors, and LCDs (write mode) that are interfaced to

microcontroller’s ports should be configured as output.

 Switches, push buttons, sensors, keypad and LCDs (read mode) that are interfaced to

microcontroller’s ports should be configured as input.

For the above filling machine example, we will use the following configuration.

Inputs:

 RA2: Bottle sensor

 RA3: Resume button

Outputs:

 RB0 to RB7: LEDs

 RC0: Machine motor ON/OFF

 RC1: Filling machine ON/OFF

 RD0 to RD6: 7-Segments outputs from “a” to “g” respectively

Step 2: System and Subsystem Design

Divide the overall system into appropriate sub-systems. The design of a subsystem includes:

(a) Defining the processes/functions that are carried out by the subsystem.

(b) Determining the input and output of the subsystem (Subsystem Interface)

Commonly, programs have “Initial” and “Main” subroutines, the Initial subroutine is used

to initialize all ports, SFRs and GPR’s used in the program and thus is only executed once

at system startup, the Main subroutine contains all the subroutines which perform the

functions of the system, many applications require that these functions be carried out

repeatedly, thus the program loops through the Main subroutine code infinitely.

Note: when designing a system, expect not that you should reach the same system design as

your friends/colleagues. Each one of you has her/his own thinking style and therefore

designs the system differently; some might divide a certain problem into two subsystems,

others into three or four. As long as you achieve a simple, easy to understand, maintainable and

correct fully working system, then the goal is achieved! Therefore, the following subsystem

design of the above problem is not the only one to approach and solve the problem. You may

divide your subsystems differently depending on the philosophy and system structure you deem

as appropriate.

6

Step 3: Implementation

As introduced before, the system should start with an initial subroutine. The nature of the

system requires it runs continuously, consequently, the program code will loop through

specific subroutines which implement the system function, we have decided to implement the

code in three Major and two Minor subroutines – aside from the Initial subroutine:

Major Subroutines (in body of the Main):

Update_Seven_Seg subroutine: reads the total number of bottles filled and displays it

on the 7-segment display.

Test_and_Process subroutine: waits for bottle, stops the conveyor, fills the bottle, and

restarts the conveyor.

Test_Resume subroutine: checks if total number of bottles filled is nine, if so, stops the

machine, continuously rotates the LEDs and tests for resume button press (this is done

by calling the LEDs subroutine)

Minor Subroutines (outside the body of Main, called by those inside):

LEDs: moves the LED in the LED array back and forth and testing for the resume button

press meanwhile.

Simplest_Delay: introduces a software delay used to give enough time for the LED to be

seen as on.

The Initial and Main Codes:

Main

Call Initial ; Initialize Ports, SFRs and GPR’s

Main_Loop

Call Update_Seven_Seg ; Test the number of Bottles and displays it on the 7-Seg.

Call Test_and_Process ; Keep testing the bottle sensor, if bottle found, process it,
; else wait until a bottle is detected

Call Test_Resume ; Check if No. of bottles is 9, if yes test if resume button is
; pressed, else skip and continue code

goto Main_Loop ; Do it again

Initial

CLRF BottleNumber ; Start count display from zero

BANKSEL TRISD ; Set register access to bank 1

CLRF TRISC ; Set up all bits of PORTC as outputs

CLRF TRISD ; Set up all bits of PORTD as outputs, connected to
; Common Cathode 7- Segments Display

CLRF TRISB ; Set up all bits of PORTB as outputs, connected to
; LED array

MOVLW 0x0C ; Set up bits (1-2) of PORTA as inputs; RA3:
MOVWF TRISA ; resume button, RA2: bottle sensor, others not used

BANKSEL ADCON1

MOVLW 06H

 MOVWF ADCON1 ;set PORTA as general Digital I/O PORT

BANKSEL PORTA

CLRF PORTB ; Initially, all LEDs are off

BSF PORTC, 0 ; Start conveyer motor

RETURN

7

Zero equ B’00111111’
One equ B’00000110’
Twoo equ B’01011011’

.

Nine

equ

.

B‘01101111’

Subsystem Flow Chart Analysis and Code Implementation

Clearly, the signals sent to the 7-Segments display are not decimal values but according to the 7Segments

layout. Refer to the Hardware Guide for more information.

We have to translate the decimal number of bottles found in the bottle counter: BottleNumber to the

appropriate common cathode 7-Segments number representation.

To do so we define the representations as constants and use a Look-up table to get the correct representation

for each bottle number.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Update_Seven_Seg subroutine ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

This subroutine returns the appropriate common cathode 7-Segments
representation of the number of bottles in order for it to be displayed by the

consecutive subroutine

; Assuming the order is dp g f e d c b a

Update_Seven_Seg

Movf BottleNumber,W

Addwf PCL, F

Retlw Zero

Retlw One

Retlw Two

Retlw Three

Retlw Four

Retlw Five

Retlw Six

Retlw Seven

Retlw Eight

Retlw Nine

8

Stop conveyer motor

 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Test_and_Process subroutine;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

This subroutine tests if a bottle is present or not, if a bottle is detected, the

conveyor motor stops, the filling machine starts working for a specified period of

time after which the filling machine stops. The conveyor belt starts moving

again. Finally the number of bottles is incremented

Test_and_Process
movwf PORTD ; display on the 7-Seg

Display number of bottles on the seven

segments display

NO

Has a bottle

been detected?

Is RA2 =1?

poll
btfss PORTA,2 ; Test the bottle sensor
goto poll
bcf PORTC,0 ; stop conveyer motor
bsf PORTC,1 ; start filling motor
call Simplest_Delay ;Insert delay
bcf PORTC,1 ; stop filling motor
bsf PORTC,0 ; start conveyer motor
incf BottleNumber,F
return

YES

Start filling motor

 Wait a specified delay

 Stop filling motor

 Start conveyer motor

 Increment the number of bottles

 Exit

9

 ;;; Test_Resume Subroutine;;

This subroutine checks if the total number of bottles reaches nine, if not it will exit,
if yes the conveyer motor stops for manual packaging. Meanwhile one LED lights
on an 8-LED-row and moves back and forth. The conveyor belt does not start again
until the resume button is pressed

Is Bottle No. == 9?

YES

NO

Exit

Test_Resume

movf BottleNumber, w

sublw .9

btfss STATUS, Z
goto fin1

call Update_Seven_Seg

movwf PORTD ; display on the 7-seg

bcf PORTC, 0 ; stop conveyer motor

bsf PORTB, 0 ; light 1 LED

bcf STATUS,C

clrf BottleNumber ; Reset System

call LEDs ; rotate LEDs

fin1
return

Update 7-Seg with the

number of the last bottle (9)

Stop conveyer motor

Light one LED on from the 8-LEDs

Clear the No. of bottles to start over

Call LEDs subroutine

10

YES

NO

NO

Turn off the LEDs

Exit

Insert delay

;; LEDs Subroutine;;

This subroutine lights one LED on an 8-LED-row and continuously moves back and

forth in this fashion. In between, the resume button is checked. If pressed, the

conveyor motor starts again and the LED array turns off else the LEDs keep rotating

and the resume button checked.

Insert enough time for the

LED to be visually seen

Rotate LED one location to the left

Has the Resume
button been

pressed? Is RA3=1

YES

Is C flag=1 (has

LED’s rotate 8

times)

Same as above but the
rotation now is to the

right direction

LEDs

Rotate_Left

Call Simplest_Delay

 rlf PORTB, F

btfsc PORTA, 3 ;check Resume button

goto fin
btfss STATUS, C
goto Rotate_Left

Rotate_Right

call Simplest_Delay
rrf PORTB , F
btfsc PORTA, 3 ;check Resume button
goto fin

btfss STATUS, C

goto Rotate_Right

goto Rotate_Left

fin
 clrf PORTB

return

11

 Decrement MSD

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Simplest_Delay Subroutine;;
This subroutine inserts delay to be used as a digit delay in 7-seg
multiplexing and as LED delay in the LED's array

Load MSD with 0xFF

Simplest_Delay

Movlw 0xFF

movwf msd

clrf lsd

Clear LSD

Decrement LSD

loop2
decfsz lsd, f

goto loop2

decfsz msd, f

goto loop2

return

NO

Is LSD = 0?

NO YES

Is MSD =
0?

Exit

YES

YES

12

How to Simulate This Code in MPLAB?

You have learnt so far that in order to simulate inputs to the PIC, you usually entered them through the

Watch window. However, this is only valid and true when you are dealing with internal memory

registers. In order to simulate external inputs to the PIC pins, we are to use what is called a Stimulus.

There are multiple actions which you can apply to an input pin, choose whatever you see as appropriate

to simulate your program. Here we have chosen to simulate the button press as a pulse.

1. Add RA2(AN2) and RA3(AN3) to the Stimulus window and BottleNumber to Watch window.

13

2. Place a break point at Instruction BTFSS PORTA,2 in the Test_and_Process
subroutine. This will allow us to change the reading of the bottle sensors.

3. Place another break point at Instruction BTFSC PORTA, 3 in the LEDs subroutine. This will allow
us to change the reading of the resume button.

4. Run your code, you will go to the First break point then press “Step Into” you will observe that
you have stuck in loop.

5. Now Press “Fire”, the arrow next to the RA2 in the Stimulus pin, what do you observe?

6. Now press “Step Into” again , observe how the value of BottleNumber change.

7. press “Run” then “fire” again, observe how the value in BottleNumber changes whenever you

reach the first breakpoint.
Note: You will reach the second breakpoint when nine bottles were detected.

8. Press “Step Into “ you will observe that you have stuck in loop.

9. Now Press “Fire”, the arrow next to the RA3 in the Stimulus pin.

10. Now press “Step Into” again, observe how the value of BottleNumber changes to ZER

1 | P a g e

University of Jordan

Faculty of Engineering and Technology

Department of Computer Engineering

Embedded Systems Laboratory 0907334

Objectives
 To become familiar with HD44780 controller based LCDs and how to use them

 Knowing the various modes of operation of the LCD (8-bit/4-bit interface, 2-lines/1-line, CG-ROM).

 Distinguishing between the commands for the instruction register and data register.

 Stressing software and hardware co-design techniques by using the Proteus IDE package to

simulate the LCD.

 Written by Eng. Ashraf Suyyagh and Eng. Enas Jaara |

4
Experiment 4: LCD

2 | P a g e

Introduction
What is an LCD?

A Liquid Crystal Displays (LCD) is a thin, flat display device made up of any number of color or
monochrome pixels arrayed in front of a light source or reflector. It is often utilized in battery-powered
electronic devices because it uses very small amounts of electric power.

LCDs have the ability to display numbers, letters, words and a variety of symbols. This experiment
teaches you about LCDs which are based upon the Hitachi HD44780 controller chipset. LCDs come in
different shapes and sizes with 8, 16, 20, 24, 32, and 40 characters as standard in 1, 2 and 4–line
versions. However, all LCD’s regardless of their external shape are internally built as a 40x2
format. See Figure 2 below

Figure 1: A typical LCD module

Figure 2: Different LCD modules shapes and sizes

Figure 3: Display address assignments for HD44780 controller based LCDs

3 | P a g e

LCD I/O

Most LCD modules conform to a standard interface specification. A 14-pin access is provided
having eight data lines, three control lines and three power lines as shown below. Some LCD
modules have 16 pins where the two additional pins are typically used for backlight purposes

Note: This image might differ from the
actual LCD module, the order can be from
left to right or vice versa therefore you
should pay attention, pin 1 is marked to
avoid confusion (printed on one of the
pins).

Powering u p the LCD requires connecting
three lines: one for the positive power Vdd

(usually +5V), one for negative power (or

ground) Vss. The Vee pin is usually

connected to a potentiometer which is used

to vary the contrast of the LCD display. We

will connect this pin to the GND. Figure 4: LCD pin-out

As you can see from the figure, the LCD connects to the microcontroller through three control lines: RS,
RW and E, and through eight data lines D0-D7.

With 16-pin LCDs, you can use the L+ and L- pins to turn the backlight (BL) on/off.

Figure 5: LCD pin-out details

4 | P a g e

Figure 6: A typical interfacing between a PIC16F877A and an LCD module

When powered up, the LCD display should show a series of dark squares. These cells are actually in
their off state. When power is applied, the LCD is reset; therefore we should issue a command to set it
on. Moreover, you should issue some commands which configure the LCD. (See the table which lists all
possible configurations below in the code and the explanation to each field)

Sending Commands/Data to the LCD

Using an LCD is a simple procedure once you learn it. Simply put you will place a value on the LCD lines

D0-D7 (this value might be an ASCII value (character to be displayed), or another hexadecimal value

corresponding to a certain command). So how will the LCD differentiate if this value on D0-D7 is

corresponding to data or command?

Observe the figure below, as you might see the only difference is in the RS signal (Register Select), this is

the only way for the LCD controller to know whether it is dealing with a character or a command!

Figure 7: Necessary control signals for Data/Commands

Setting the necessary control signals in software:

For this experiment assume that RS (Register Select) is connected to PORTA1 , R/W (Read/Write) to

PORTA2 (In this lab experiment we are only writing to the LCD, reading from the LCD is left to the

student as home study)and E(Enable) is connected to PORTA3. Moreover, assume that the LCD lines D0-

D7 are directly connected to PORTD.

5 | P a g e

we will introduce two subroutines; one will set the necessary control signals for sending a character

(send_char), the other for sending a command (send_cmd).

1
2
3
3
3
4

send_char
movwf PORTD
bsf PORTA,1
bsf PORTA, 3
nop
bcf PORTA, 3
bcf PORTA, 2
call delay
return

1
2
3
3
3
4

send_cmd
movwf PORTD
bcf PORTA, 1
bsf PORTA, 3
nop
bcf PORTA, 3
bcf PORTA,2
call delay
return

Steps to send character to LCD

1.Place the ASCII character on the D0-D7 lines

2. Register Select (RS) = 1 to send characters

3. "Enable" Pulse (Set High – Delay – Set Low)

4. Delay to give LCD the time needed to display the

character

Steps to send a command to LCD

1.Place the command on the D0-D7 lines

2. Register Select (RS) = 0 to send commands

3. "Enable" Pulse (Set High – Delay – Set Low)

4. Delay to give LCD the time needed to carry out the

command

Table 1: Sending Characters/Commands Steps

Displaying Characters

All English letters and numbers (as well as
special characters, Japanese and Greek
letters) are built in the LCD module in such a
way that it conforms to the ASCII
standard. In order to display a character,
you only need to send its ASCII code to the
LCD which it uses to display the character.

To display a character on the LCD simply
move the ASCII character to the working
register (for this experiment) then call
send_char subroutine.

Notice that from column 1 to D, the

character resolution is 5 pixels wide x 7

pixels high (5x7) (column 0 is a special

case, it is 5x8, but considered as 5x7, more

on this later) whereas the character

resolution of columns E and F is 5 pixels

wide x 10 pixels high (5x10). We should

change the resolution if we are to use

characters from different resolution

columns, this can be done using a command

discussed later.

Figure 8: LCD Characters Map

6 | P a g e

Figure 9: LCD command control codes

To issue any of these commands to the LCD, all you have to do is place the command value in the
working register, then issue the instruction “Call Send_cmd”

;***
; Explaining the commands and their parameters in the LCD command table
;***

Clear Display
Moving the value 01 to the working register followed by “call send_cmd” will clear the LCD display,
however the cursor will remain at it last position, so any future character writes will start from the last
location, to reset the cursor position use the Display and Cursor Home command.

Display and Cursor Home
Resets cursor location to position 00 of the LCD screen (Figure 3), future writes will start at the first
location of the first line.

Character Entry Mode
This command has two parameters 1/D and S:
1/D: By default, the cursor is automatically set to move from location 00 to 01 and so on (Increment
mode). Suppose now that you are to write from right to left (as in the Arabic language), then you have to
set the cursor to the Decrement mode.
S: Accompanies the D/C parameter, explained below

Display On/OFF and Cursor
This command has three parameters:
D: Turns on the display (when you see the black dots on the LCD, it means that it is POWERED on, but
not yet ready to operate), this command activates the LCD in order to be ready to use.
U: This displays the cursor (in the form of a horizontal line at the bottom of the character) when it is
high and turns the cursor off when it is low
B: If the underline cursor option is enabled, this will blink the cursor if high.

7 | P a g e

Display/Cursor Shift
All LCDs based on the HD44780 format - whatever their actual physical size is - are internally built in to
be 40 characters x 2 lines with the upper row having the display addresses 0-27H (27H = 39D 0-39 =

40 Characters!!) and the lower row from 40 H -67H. Now suppose you bought an LCD with the physical
size of 20 char. x 2 lines, when you start writing to the LCD and the cursor reaches locations 20D, 21 D,
and 22 D …, you will not see them BUT don’t worry, they are not lost. They were written in their
respective locations but you could not see them because your bought LCD is 20 visible Characters wide
from the outside and 40 from the inside. All you have to do is shift the display. So all you do is

1. Determine the direction of the shift (R/L)
2. Issue the shift Command D/C

R/L: Determines the direction of the shift, this might be useful if you are writing Arabic characters …
D/C: if this bit has a value of 0, the display is not shifted and the cursor moves the same way it was, if
the its value is logic high, the display is shifted once, you might need to issue this command multiple
times in order to shift the display by multiple locations!

Function Set
This command has three parameters:
8/4: Eight/Four bits mode
8 – Bit interface: you send the whole command/character (8 bits) in one stage to the D0-D7 lines
4 – Bit interface: you send the command/character in two stages as nibbles to D4-D7 lines.
When to use the 4-bit mode?

1. Interfacing LCD with older devices which have 4-bit wide I/O Bus
2. You don’t have enough I/O pins remaining, or you want to conserve the I/O pins for other HW

2/1: Line mode, determines whether you want to use the upper line of the LCD or both lines

10/7: Dot format, based on the LCD built-in characters table, note the following:
* 5x7 format (Default) is used whenever you use the characters found in columns 1 to D
* 5x7 format is also used whenever you use the built in characters in CG-RAM (EVEN THOUGH

THE CG-RAM CHARACTERs ARE 5X8!!!)
* 5x10 format is only used when displaying the characters found in columns E and F

*** In
LCD initialization, we normally set “Clear Display”, “Display and Cursor Home”, “Display On/OFF”
and “Cursor, and Function Set”, we place the value of the command then use the call send_cmd
instruction.

Set Display Address command
Syntax: 1AAAAAAA
This command allows you to move the cursor to whichever location you want, suppose you want to
start writing in the middle of the display (assuming the visible width of the LCD screen is 20), then from
Figure 2 you will observe that location 06 is approximately in the middle so you replace the A’s with 06:
1AAAAAAA 100001100x86
Moreover, suppose you wish to move to the second line which starts at location 40, same as above
1AAAAAAA 11000000 0xC0
After calculating this value, you place it in the working register and then use the call send_cmd
instruction.

8 | P a g e

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

;***
; EXAMPLE CODE 1
;***
; This code displays on the first “upper” row of the LCD the 26 English letters in alphabetical order
; The code starts with LCD initialization commands such as clearing the LCD, setting modes and
; display shifting.
;
; Outputs:
; LCD Control:
; RA1: RS (Register Select)
; RA3: E (LCD Enable)
; LCD Data:
; PORTD 0-7 to LCD DATA 0-7 for sending commands/characters
; Notes:
; The RW pin (Read/Write) - of the LCD - is connected to RA2
; The BL pin (Back Light) – of the LCD – is connected to potentiometer
;***
 include "p16f877A.inc"
;***
 cblock 0x20
 tempChar ;holds the character to be displayed
 charCount ;holds the number of the English alphabet
 lsd ;lsd and msd are used in delay loop calculation
 msd
 endc
;***
; Start of executable code
 org 0x000
 goto Initial
;***
; Interrupt vector
INT_SVC org 0x0004
 goto INT_SVC
;***
; Initial Routine
; INPUT: NONE
; OUTPUT: NONE
; RESULT: Configure I/O ports (PORTD and PORTA as output, PORTA as digital)
; Configure LCD to work in 8-bit mode, with two lines of display and 5x7 dot format.
; Set the cursor to the home location (location 00), set the cursor to the visible state
; with no blinking
;***
Initial
 Banksel TRISA ;PORTD and PORTA as outputs
 Clrf TRISA
 Clrf TRISD

 Banksel ADCON1 ;PORTA as digital output

 Movlw 07

 mowf ADCON1
 Banksel PORTA
 Clrf PORTA
 Clrf PORTD
 movlw d'26'
 Movwf charCount ; initialize charCount with 26 Number of Characters in the English language

9 | P a g e

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

107

 Movlw 0x38 ;8-bit mode, 2-line display, 5x7 dot format

 Call send_cmd
 Movlw 0x0e ;Display on, Cursor Underline on, Blink off
 Call send_cmd
 Movlw 0x02 ;Display and cursor home
 Call send_cmd
 Movlw 0x01 ;clear display
 Call send_cmd
;***
; Main Routine
;**
Main
 Movlw 'A'
 Movwf tempChar
CharacterDisplay ; Generate and display all 26 English Letters
 Call send_char
 Movf tempChar ,w ; ‘A’ has the ASCII code of 65 decimal (0x41), by

Addlw 1 ; adding 1 to it we have 66, which is B. Therefore, by
 movwf tempChar ; continuously adding 1 to tempChar we are cycling
 movf tempChar ,w ; through the ASCII table (here: alphabets)
 decfsz charCount
 goto CharacterDisplay
Mainloop
 Movlw 0x1c ;This command shifts the display to the right once
 Call send_cmd
 Call delay
 Goto Mainloop ; This loop makes the character rotate continuously
;**
send_cmd
 movwf PORTD ; Refer to table 1 on Page 5 for review of this subroutine
 bcf PORTA, 1
 bsf PORTA, 3
 nop
 bcf PORTA, 3
 bcf PORTA, 2
 call delay
 return
;**
send_char
 movwf PORTD ; Refer to table 1 on Page 5 for review of this subroutine
 bsf PORTA, 1
 bsf PORTA, 3
 nop
 bcf PORTA, 3
 bcf PORTA, 2
 call delay
 return
;**
delay
 movlw 0x80
 movwf msd
 clrf lsd
loop2
 decfsz lsd,f

10 | P a g e

109

110

111

112

113

114

115

116

 goto loop2
 decfsz msd,f
endLcd
 goto loop2
 return
;**
 End

Set CG-RAM Address command
Syntax: 01AAAAAA

If you give a closer look at Figure 8, you will clearly see that the table only contains English and
Japanese characters, numbers, symbols as well as special characters! Suppose now that you would like
to display a character not found in the built-in table of the LCD (i.e. an Arabic Character). In this case we
will have to use what is called the CG-RAM (Character Generation RAM), which is a reserved memory
space in which you could draw your own characters and later display them.

Observe column one in Figure 8, the locations inside this column are reserved for the CG-RAM. Even
though you see 16 locations (0 to F), you only have the possibility to use the first 8 locations 0 to 7
because locations 8 to F are mirrors of locations 0 – 7.

So, to organize things, in order to use our own characters we have to do the following:

1. Draw and store our own defined characters in CG-RAM
2. Display the characters on the LCD screen as if it were any of the other characters in the table

Drawing and storing our own defined characters in CG-RAM
As stated earlier, we have eight locations to store our characters in. So how do we choose which
location out of these to start drawing and building our characters in?
The answer is quite simple; follow this rule as stated in the datasheet of the HD44780 controller

1. To write (build/store a character in location 00 (crossing of the row and column)), you send the
CG-RAM address command as follows: 01AAAAAA 01000000 0x40

2. However, to write in any location from 01 to 07, you have to skip eight locations (WHY?)
So the CG-RAM address command will send 0x48 (to store a character in location 1), 0x50 (to
store a character in location 2) and so on...

So up to this point we have defined where to write our characters but not how to build them!
This is the fun part, draw a 5x8 Grid and start drawing your character inside, then replace
each shaded cell with one and not shaded ones with zero. Append three zeros to the left (B5-B7)
and finally transform the sequence into hexadecimal format. This is the sequence which you will
fill in the CG-RAM SEQUENTIALLY once you have set the CG-RAM Address before.

11 | P a g e

B4 B3 B2 B1 B0

B7 B6 B5 B4 B3 B2 B1 B0

 0 0 0 0 1 1 1 0 0x0E

 0 0 0 1 0 0 0 1 0x11

 0 0 0 0 1 1 1 0 0x0E

 0 0 0 0 0 1 0 0 0x04

 0 0 0 1 1 1 1 1 0x1F

 0 0 0 0 0 1 0 0 0x04

 0 0 0 0 1 0 1 0 0x0A

 0 0 0 1 0 0 0 1 0x11

Displaying the user generated (drawn) characters on the LCD screen

Simply,if we stored our character in location 0, we move 0 to the working register then issue the “call
send_char” command, if we stored it in location 2, move 2 to the working register and so on ….

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Example
DrawStick1 Setting the CGRAM address at which we draw the stick man
 Movlw 0x40 ;Here it is address 0x00 in Figure 8 which transforms into
 Call send_cmd ; command 0x40
 Movlw 0X0E Sending data that implements the Stick man
 Call send_char ; Notice the address where to store the character in CG-RAM
 Movlw 0X11 ;is a command thus use send_cmd, whereas the
 Call send_char ;data bits of the stickman are sent as Data
 Movlw 0X0E ;using send_char
 Call send_char
 Movlw 0X04
 Call send_char
 Movlw 0X1F
 Call send_char
 Movlw 0X04
 Call send_char
 Movlw 0X0A
 Call send_char
 Movlw 0X11
 Call send_char
 Return

12 | P a g e

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

;**
; EXAMPLE CODE 2
;**
; This code stores two shapes of a stickman, one in location 00 (of Figure 8), and another at location
; 01. The first stickman is written on the leftmost location of the upper line, the second stick man
; shape is also written above the first one, then the first stick man is rewritten on the same location
; that is display: first stickman shape second stickman shape first stickman shape and so on ..
; thus the stickman will appear as if it is moving !
;
; Outputs:
; LCD Control:
; RA1: RS (Register Select)
; RA3: E (LCD Enable)
; LCD Data:
; PORTD 0-7 to LCD DATA 0-7 for sending commands/characters
; Notes:
; The RW pin (Read/Write) - of the LCD - is connected to RA2
; The BL pin (Back Light) – of the LCD – is connected potentiometer
;**
 include "p16f877A.inc"
;**
 cblock 0x20
 lsd ;lsd and msd are used in delay loop calculation
 msd
 endc
;**
; Start of executable code
 org 0x000
 goto Initial
;**
; Interrupt vector
INT_SVC org 0x0004
 goto INT_SVC
;**
; Initial Routine
; INPUT: NONE
; OUTPUT: NONE
; RESULT: Configure I/O ports (PORTD and PORTA as output, PORTA as digital)
; Configure LCD to work in 8-bit mode, with two lines of display and 5x7 dot format.
; Set the cursor to the home location (location 00), set the cursor to the visible state
; with no blinking
;**
Initial
 Banksel TRISA ;PORTA and PORTD as outputs
 Clrf TRISA
 Clrf TRISD

 Banksel ADCON1 ;PORTA as digital output

 movlw 07

 mowf ADCON1
 Banksel PORTA
 Clrf PORTA
 Clrf PORTD
 Movlw 0x38 ;8-bit mode, 2-line display, 5x7 dot format
 Call send_cmd

13 | P a g e

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

 Movlw 0x0e ;Display on, Cursor Underline on, Blink off
 Call send_cmd
 Movlw 0x02 ;Display and cursor home
 Call send_cmd
 Movlw 0x01 ;clear display
 Call send_cmd
 Call DrawStick1 ;The subroutines draw and store the Stick man inside the
 Call DrawStick2 ;CG-RAM. This DOES NOT mean that the character is
 ;displayed on the LCD, it was only stored inside the CG-RAM
 ;of the LCD.
 Movlw 0x01 ;the datasheet says you have to clear display command after
 Call send_cmd ;storing the characters or the code will not work

;**
; Main Routine
;**
Main
 Movlw 0x00 ;Display character stored in location 00 (Figure 8), which in
 Call send_char ;this case is our first stickman in CG-RAM
 Movlw 0x02 ;Cursor Home Command
 Call send_cmd
 Movlw 0x01 ;Display character stored in location 00 (Figure 8), which in
 Call send_char ;this case is our first stickman in CG-RAM
 Movlw 0x02 ;Cursor Home Command
 Call send_cmd
 Goto Main ; This loop makes the character rotate continuously
;**
send_cmd
 movwf PORTD ; Refer to table 1 on Page 5 for review of this subroutine
 bcf PORTA, 1
 bsf PORTA, 3
 nop
 bcf PORTA, 3
 bcf PORTA, 2
 call delay
 return
;**
send_char
 movwf PORTD ; Refer to table 1 on Page 5 for review of this subroutine
 bsf PORTA, 1
 bsf PORTA, 3
 nop
 bcf PORTA, 3
 bcf PORTA, 2
 call delay
 return
;**
delay
 movlw 0x80
 movwf msd
 clrf lsd
loop2
 decfsz lsd,f
 goto loop2

14 | P a g e

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

145

146

147

148

149

150

151

152

153

154

155

 decfsz msd,f
endLcd
 goto loop2
 return
;**
DrawStick1 Setting the CGRAM address at which we draw the stick man
 Movlw 0x40 ; Here it is address 0x00 in Figure 8 which transforms
 Call send_cmd ; into command 0x40
 Movlw 0X0E ;Sending data that implements the Stick man
 Call send_char
 Movlw 0X11
 Call send_char
 Movlw 0X0E
 Call send_char
 Movlw 0X04
 Call send_char
 Movlw 0X1F
 Call send_char
 Movlw 0X04
 Call send_char
 Movlw 0X0A
 Call send_char
 Movlw 0X11
 Call send_char
 Return
;**
DrawStick2 ;Setting the CGRAM address at which we draw the stick man
 Movlw 0x48 ;Here it is address 0x01 in Figure 8 which transforms
 Call send_cmd ; into command 0x48
 Movlw 0X0E ;Sending data that implements the Stick man
 Call send_char
 Movlw 0X0A
 Call send_char
 Movlw 0X04
 Call send_char
 Movlw 0X15
 Call send_char
 Movlw 0X0E
 Call send_char
 Movlw 0X04
 Call send_char
 Movlw 0X0A
 Call send_char
 Movlw 0X0A
 Call send_char
 Return
;**
 End

1

University of Jordan

Faculty of Engineering and Technology

Department of Computer Engineering

Embedded Systems Laboratory 0907334

Objectives
The main objectives of this experiment are to familiarize you with:

 Writing PIC programs in C

 Setting up MPLAB IDE projects to use the HI-TECH C compiler

 Becoming familiar with HI-TECH C primitives, built-in function in use with 10/12/16 MCU Family

Prepared by Eng. Enas Ja’ra

6

Experiment 6: Using HI-TECH C

Compiler in MPLAB

2

INTRODUCTION

So far in this lab course, PIC assembly programming has been introduced, however, in practice, most of the

industrial and control codes are written in High Level Languages (abbreviated as HLL) the most common of

which is the C programming language. The use of high level languages is preferred due to their simplicity

which allows for faster program development (especially for large and very complex programs), easier

debugging, and for easier future code maintainability, this will provide developers with shorter time to

market advantages in a world where competition is at its prime to introduce new commercial products. On

the other hand, HLLs assembled codes are often longer (due to inefficient compilers, aggressive and

advanced optimizing compilers are often used to yield better results). Longer codes are at a disadvantage

since memory space is limited in microcontrollers not to mention that longer codes take more time to

execute. Expert assembly programmers can rewrite certain pieces of code in a very optimized and short

fashion such that they execute faster, this is very important especially when real time applications are

concerned. This direct use of assembly language requires that the programmer knows the problem in hand

very well and that one is experienced in both software and target microcontroller hardwrae limitations.

Often, programmers combine in between the use of C and Assembly language in the same developed source

code.

There are many C compilers available commercially, such as mikroC, CCS and HI-TECH among others. This

experiment introduces the “free” Lite version C compiler from HI-TECH software bundled with MPLAB, in

contrast to the Pro versions of compilers commercially available from HI-TECH and others, the compiler

and assembler don’t use aggressive techniques and the resultant assembly codes are larger in size.

THIS PART ASSUMES YOU HAVE ALREADY SAVED A FILE WITH A C EXTENSION AND YOU HAVE ALREADY

INSTALLED THE HI-TECH C PRO FOR THE PIC10/12/16 MCU FAMILY COMPILER

Create a project in MPLAB in the same

steps as was shown in Exp 0, the only

difference is in the step of selecting a

language toolsuite; “ Active Toolsuite”

dialog box:

In this step where you get to specify the

toolsuite associated with the project,

you are not associating the project with

the MPASM compiler as previously done,

but instead we will be using the HI-

TECH C compilers for Microchip devices

In the Active Toolsuite drop down menu,
select HI-TECH Universal Toolsuite
Click next.

The next steps will proceed as usual:

3

Browse to the directory where

you saved your C file. Give your

project a name Save Next. If

you navigated correctly to your

file destination you should see it

in the left pane otherwise choose

back and browse to the correct

path. When done Click add your

file to the project (here:

FirstCFile.c). Make sure that the

letter C is beside your file and not

any other letter Click next

Click Finish.

As before, you should see your C file under Source file list, now you are ready to begin.

Double click on the FirstCFile.C file in the project file tree to open. This is where you will write your

programs, debug and simulate them.

CORRECT WRONG

4

The proceeding parts assume that you have basic knowledge of programming in C. We will present the C

language in general context then we’ll introduce it within the contest of use in PIC programming. The

following discussion attempts to write and simulate a simple C program in MPLAB and check the results

In MPLAB, inside your newly created project from above, write the following:

#include <htc.h>
void main(void) // every C program you write needs a function called main.
{

}

Notice that comments are indicated with // instead of ‘;’

After writing the above EMPTY program we should build the code to ensure that MPLAB IDE and HI-TECH

C are properly installed. Select Build from the Project menu, or choose any of MPLAB IDE’s shortcuts to

build the project — you can, for instance, click on the toolbar button that shows the HI-TECH “ball and

stick” logo, as shown in the figure below. You will notice that the Project menu has two items: Build and

Rebuild.

An output window

should show with

BUILD SUCCEDDED

The compiler has

produced memory

summary and there

is no message

indicating that the

build failed, so we

have successfully

compiled the project.

If there are errors

they will be printed

in Build tab of this

window. You can

double-click each

error message and MPLAB

IDE will show you the

offending line of code,

where possible. If you do get

errors, check that the

program is as it is written in

this document. BUILD SUCCEED DOES NOT MEAN THAT YOUR PROGRAM IS CORRECT, IT SIMPLY

MEANS THAT THERE ARE NO SYNTAX ERRORS FOUND, SO WATCH OUT FOR ANY LOGICAL

ERRORS YOU MIGHT MAKE.

5

Quick Review of the Basic Rules for Programming in C
1. Comments for only ONE line of code start with 2 slashes: //

// This is a one line comment

Remember to always document your code through the use of functional comments!

2. Comments for more than one line start with /* en end with */

/*

This is a comment.

This is another comment.

*/

3. At the end of each line with some instruction, a semi-colon (;) has to be placed.

a=a+3;

4. Parts of the program that belong together (functions, statements, etc.), are between { and }.

void main(void) //Function

{

//Add code

}

The Basic Structure of a C Program

The ordered structure of a program in C is as follows:

 Libraries

 Global Variables

 Function Prototypes

 Main Function

 Functions

 Adding libraries (the initial few lines of any C program)

Syntax: #include <filename.h>

Libraries such as “htc.h”, “math.h” and “stdlib.h” include many references to built-in variables and

functions to be used in programs, if the header files are not included, the built-in functions and

variables if used will not be defined which will result in build errors.

The htc.h file will be included in all our C programs which use the HI-TECH compiler, other

compilers have different header files, refer to their documentation when needed.

 Declaring “global” variables.

Define and declare the variables to be used throughout the program, this is in contrast to “local”

variables discussed later on.

 Defining prototypes of the functions.

A C program has a main function and possibly other functions as well which might be written below

the main function. If we are to call any of the other functions from inside the main subroutine, the

build will fail and indicate that the function is undefined. This is because the code is compiled line

by line and at the moment the compiler attempts to compile “call function”, it still has not known of

the existence of this function because it is declared later in the code “after main”. One solution is to

place all the functions before the main function. Another preferred method is the use of function

prototype. A prototype of a function ensures that the function can be called anywhere in the

program. It is simply copying only the header of the function, placing it before the main

subroutine and ending it with a semicolon ‘;’

6

 Main function.

This is the function that will be called first when starting your microcontroller. From there, other

functions are called. Every C program must have a main function.

 Functions.

Functions are a grouping of instructions which perform a certain task. They are the unit of

modularity and are very useful to make it easy to repeat tasks. They have input and output

variables.

Syntax: type identifier function name (type identifier identifier1, type identifier identifier2 ….)

{

 //The body of the function

 return identifier //only when return type is not void

}

Type identifier: could be int, long, short, char, void ….. etc

The output variable type precedes the function’s name, input variables follow the function name

and are placed in between brackets, a function can take as many input variables as needed but it

only returns one output variable.

testFunction1 has two input

parametres of type integer (x,y)

but has no output, all processing

is local inside the function and it

returns no values

testFunction2 has one input

parameter of type integer (x), it

returns an output which is the

square of the input number.

Notice, that value returning

functions end with a return

statement, omitting of which will

result in an error

testFunction3 takes no

input or outputs.

void testFunction1(int x, int y)

{

 int k;

 k = x;

 y = 2 + x;

}

int testFunction2 (int x)

{

 return x*x;

}

void testFunction3 (void)

{

 //some code

}

How to call function: Examples

testFunction1(75,99) A = testFunction2(5)

Since this type of functions

returns a value, the value need

be stored in a previously defined

variable. The variable must be

defined as the same return

output type of the function, if the

function returns an integer, A

must be defined as integer, if the

function returns a character, A

need be defined as character …

testFunction()

Note that the brackets are

left empty when no

arguments are passed

7

More on Variables
Variables can be classified into two main types depending on their scope:

Global Variables
These variables can be accessed (i.e. known) by any function comprising the program. They are
implemented by associating memory locations with variable names. They do not get recreated if the
function is recalled. In Example Program 1, (a, b, c, and temp) are GLOBAL VARIABLES
Local Variables
These variables only exist inside the specific function that creates them. They are unknown to other
functions and to the main program. As such, they are normally implemented using a stack. Local
variables cease to exist once the function that created them is completed. They are recreated each time
a function is executed or called. In Example Program 1, (p) is a LOCAL VARIABLE

Variable Types
The following table lists all possible variable types in C, the size they take up in memory and the
range of each.

Type Memory usage Possible values

bit 1 bit 0, 1
char 8 bits -128…127
unsigned char 8 bits 0…255
signed char 8 bits -128…127
int 16 bits -32k7…32k7
unsigned int 16 bits 0…65k5
signed int 16 bits -32k7…32k7
long int 32 bits -2G1…2G1
unsigned long int 32 bits 0…4G3
signed long int 32 bits -2G1…2G1
float 32 bits ± 10^(±38)
double 32 bits ± 10^(±38)

Example Program 1: Typical Program Layout
// ExampleProgram1.c

#include <htc.h> //Always include this library when using HI-TECH C compiler
//Declaring global variables

int a, b, c;
char temp;

//Defining prototypes
int calc (int p);

//Main function
void main(void)
{

a=calc(3); //write main body code
}

//Functions
int calc (int p)
{

p=p+1; //write function body code
return p;

}

8

Default Input Is Decimal

C Operators

 Relational and bit operators

> Greater than

>= Greater than or similar to
< Less than

<= Less than or similar to
== Equal to
!= Not equal to

 Arithmetic operators

x--; This is the same as x = x – 1;

x++; This is the same as x = x + 1;

~ Bitwise NOT
& Bitwise AND
| Bitwise OR
^ Bitwise XOR

<< Shift to left
>> Shift to right

+ Addition
- Subtraction
* Multiplication
/ Division

% Modulus (remainder after division)

Example Program 2:

#include <htc.h>
char Ch;
unsigned int X;
signed int Y;
int Z, a, b, c; // Same as "signed int"
unsigned char Ch1;
bit S, T;

void main (void)
{

Ch = 'a';
X = -5;
Y = 0x25;
Z =-5;
Ch1='b';
T = 0;
S = 81; //S=1 When assigning a larger integral type to a bit variable,

//only the Least Significant bit is used.
 a = 15;

b = 0b00001111;
c = 0x0F;
// a, b, c will all have the same value which is 15

}

9

Operators Precedence Chart
Operator precedence describes the order in which C reads expressions. For example, the expression

a=4+b*2 contains two operations, an addition and a multiplication. Does the HI TECH compiler evaluate

4+b first, then multiply the result by 2, or does it evaluate b*2 first, then add 4 to the result? The operator

precedence chart contains the answers. Operators higher in the chart have a higher precedence, meaning

that the HI TECH compiler evaluates them first. Operators on the same line in the chart have the same

precedence, and the "Associativity" column on the right gives their evaluation order.

Operator Precedence Chart

Operator Type Operator Associativity

Primary Expression Operators () left-to-right

Binary Operators

* / %

left-to-right

+ -
>> <<

< > <= >=

== !=
&

^
|

Example Program 3: Fibonacci series: 0, 1, 1, 2, 3, 5

#include <htc.h> // Library
unsigned int Fib (unsigned int Num1, unsigned int Num2); // Prototype
unsigned int F1, F2, F3, F4, F5, F6; // Global Variables

void main (void) // Main function
{

F1 = 0;
F2 = 1;
F3 = Fib (F1, F2);
F4 = Fib (F2, F3);
F5 = Fib (F3, F4);
F6 = Fib (F4, F5);

}
 unsigned int Fib (unsigned int Num1, unsigned int Num2) //Function
{

 return Num1 + Num2;
}

10

Preparing for Simulation

1. Start a new MPLAB session, add the file ExampleProgram3.c to your project

2. Build the project

3. Select Debugger Select Tool MPLAB SIM

4. Go to View Menu Watch (From the drop out menu choose the variables watch F1 through F6 we

want to inspect during simulation and click ADD Symbol for each one)

From the Debugger Menu choose Select Tool then MPLAB SIM
After the following buttons appears in the toolbar:

5. Press the “Step into” button one at a time and check the Watch window each time an
instruction executes; keep pressing “Step into” until you all the six terms of the series are
generated.

6. Reset the simulation, do step 5 above but this time use “Step Over”, note the difference
7. Reset the simulation, do step 5 above, this time place a break point at the last instruction in

main, press run. Inspect the variables in watch window.

Notes about simulating a code written in C in MPLAB
Stepping into codes written in C is not as direct as one would imagine, different compilers translate the

C code into assembly differently, a single line of code might be translated into multiple assembly lines,

for example a simple assignment statement “X = 5” where X has been defined as integer will be

translated into four assembly instructions.

Movlw 05

Movwf 0x70 //GPR address 0x70 chosen by compiler

Movlw 00

Movwf 0x71

Since X is an integer which reserves 2 bytes in memory (16 bits as specified in the table in page 7), it

need be saved as 0x0005, so two instructions are needed to load the first byte into location 0x70 and

another two to move the rest of the number into location 0x71.

If a simple one statement instruction was assembled like this, imagine how would complex statements

be translated like for loops and if statements. Moreover, some compilers are more efficient than others,

which give you optimized shorter assembly codes which might not be easy to understand.

Moreover, function placement spans through multiple pages in program memory, the code might not be

placed in consecutive order into memory by the compiler; further overhead instructions to switch

between pages are common.

In addition, the use of built-in library functions will further complicate stepping through assembly codes

line by line as these functions are often provided as a black box for the developer to use with no interest

in their details.

For this, it might be difficult for the inexperienced to understand the assembly code generated by

compilers, and stepping into assembly code one instruction at a time might be a headache. It is often

advised to place breakpoints at points of interest and run the program till it halts at the required

breakpoints and analyze the outputs in the watch window.

11

Control and Repetition Statements
 IF...ELSE statements

 WHILE loop

 FOR loop

while (expression)

{

 statement 1;

 statement 2;

 .

 .

 statement n;

}

if (expression1)

{

 statement 1;

 .

 .

 statement n;

}

else

{

 statement 1;

 .

 .

 statement n;

}

for (expr1; expr2; expr3)

{

 statement 1;

 statement 2;

 .

 .

 statement n;

}

Example Code 5:

if (a==0) //If a is equal to 0
{

b++; // increase b and c by 1
c++;

}
else
{

b--; //decrease b and c by 1
c--;

}

Example Code 6:

while (a>=1) && (a <=10) //As long as 1<=a <= 10
{

b = b + 3;
c = a%b;

}

Example Code 7:

for (i = 0 ; i < 100 ; i++) //loop 100 times
{

B = B + i + A%i;
}

12

C for PIC
The preceding discussion introduced the C language in a broad concept. Now, we will draw an example of

how to use C with the PIC microcontroller. Actually, it is fairly simple where besides user defined variables,

the PIC registers are also used in the context of programs.

The microcontroller is completely controlled by registers. All registers used in MPLAB HI-TECH have
exact the same name as the name stated in the datasheet. Registers can be set in different ways,
following are few examples:

TRISB = 0b00000000; //TRISB is output
PORTC = 255; //All pins of PORTC are made high
PORTD = 0xFF; //All pins of PORTD are made high
PORTB = 170; //Pin B7 on, B6 off, B5 on, B4 off, etc.
TRISB = 0b11110010; //Pin RB7, RB6, RB5, RB4 and RB1 are input, other bits are outputs.
OPTION=0xD4 //PSA assigned to TMR0, Prescalar = 32, TMR0 clock source is the internal instruction cycle

//clock, External interrupt is on the rising “refer to datasheet”
.

To set or reset one single bit in a register (one of the 8 bits), the pin name is used and, the names of the
bits are also as specified and used in the datasheet.
Some examples:

RB0 = 1 //Pin B0 on
RB7 = 0 //Pin B7 off

Example Program 8: Periodically switch a LED connected to RD0 on and off

#include <htc.h>

// if the whole function is placed before the main function, there is no need for a prototype

void Wait()

{

 unsigned char i;

 for(i=0; i<100; i++)

 _delay(60000); //built in function .. more info next page

}

void main()

{

 //Initialize PORTD -> RD0 as Output

TRISD=0b11111110;

 //Now loop forever blinking the LED.

while(1)

{

 RD0 = 1; //LED on

 Wait();

 RD0 = 0; //LED off

 Wait();

}

}

13

To simulate the above example code, you can either select PORTD from the ADD SFR drop down menu
or choose _PORTDbits from the ADD SYMBOL drop list, click on the + sign to expand and see the
individual bits.

Place your break points on both Wait() instructions and run the code.

BUILT IN LIBRARY FUNCTIONS
The C standard libraries contain a standard collection of functions, such as string, math and
input/output routines. The declaration or definition for a function is found in the htc.h and other
libraries files which are to be included whenever necessary. Some of these functions are listed below,
the syntax of each and a brief description follows.

Delay functions

_DELAY

Synopsis
#include <htc.h>
void _delay(unsigned long cycles);

Description
This is an inline function that is expanded by the
code generator. The sequence will consist of code
that delays for the number of cycles that is
specified as argument. The argument must be a
literal constant.
An error will result if the delay period requested
is too large. For very large delays, call this
function multiple times.

//Example

#include <htc.h>

int A;

void main (void)

{

A = A | 0x7f;

_delay(10); // delay for 10 cycles

A = A & 0x85;

 }

__DELAY_MS, __DELAY_US

Synopsis
__delay_ms(x) // request a delay in milliseconds
__delay_us(x) // request a delay in microseconds

Description
As it is often more convenient request a delay in
time-based terms rather than in cycle counts, the
macros __delay_ms(x) and __delay_us(x) are
provided. These macros simply wrap around
_delay(n) and convert the time based request into
instruction cycles based on the system frequency.
These macros require the prior definition of
preprocessor symbol _XTAL_FREQ. This symbol
should be defined as the oscillator frequency (in
Hertz) used by the system.

//Example

#include <htc.h>

int A;

#define _XTAL_FREQ 4000000

void main (void)

{

A = A | 0x7f;

 __delay_ms(10); // delay for 10 ms

A = A & 0x85;

}

14

Arithmetic functions
In addition to the htc.c library, other libraries such as Standard Library <stdlib.h> or C Math
Library <math.h> need be included in the project for making use of many useful built-in functions.
Make sure you include the appropriate header files for each library before making use of its
functions or else build errors will be present.

ABS, POW, LOG, LOG10, RAND, MOD, DIV, CEIL, FLOOR, NOP, ROUND, SQRT are required.. refer to the
datasheet for the documentation of the others

ABS

Synopsis
#include <stdlib.h>
int abs (int j)

Description
The abs() function returns the absolute value of
the passed argument j.

POW

Synopsis
#include <math.h>
double pow (double f, double p)

Description
The pow() function raises its first argument, f, to
the power p.

LOG, LOG10

Synopsis
#include <math.h>
double log (double f)
double log10 (double f)

Description
The log() function returns the natural logarithm
of f. The function log10() returns the
logarithm to base 10 of f.

RAND

Synopsis
#include <stdlib.h>
int rand (void)

Description
The rand() function is a pseudo-random number
generator. It returns an integer in the range 0 to
32767, which changes in a pseudo-random
fashion on each call.

15

Trigonometric functions
SIN, COS, TAN, COS, ASIN, ATAN …… refer to the data sheet for the others

 define directive

You can use the #define directive to give a meaningful name to a constant in your program.

Example:

#define COUNT 1000

 SIN

Synopsis
#include <math.h>
double sin (double f)

Description
This function returns the sine function of its
argument.it is very important to realize that C
uses radians, not degrees to perform these
calculations! If the angle is in degrees you must
first convert it to radians.

 COS

Synopsis
#include <math.h>
double cos (double f)

Description
This function yields the cosine of its argument,
which is an angle in radians. The cosine is
calculated by expansion of a polynomial series
approximation.

// Example:
#include <htc.h>
#include <math.h>
#include <stdio.h>
#define C 3.141592/180.0
double X,Y;
void main (void)
{
double i;
X=0;
Y=0;
for(i = 0 ; i <= 180.0 ; i += 10)
{X= sin(i*C);
Y= cos(i*C);
}
}

#define identifier constant

University of Jordan

Faculty of Engineering and Technology

Department of Computer Engineering

Embedded Systems Laboratory 0907334

Objectives
 To become familiar with hardware timing modules provided by the PIC 16F877A
 To become familiar with the concept of 7 segment multiplexing

 Written by Eng. Ashraf Suyyagh and Eng. Enas Jaara |

7
Experiment 7:Timers

Pre-lab

You are required to review the following in order to be fully prepared for the experiment, refer back to both
your text book and the Microchip PIC datasheets whenever you find it necessary.

 The operation of the Timer0 Module and the related OPTION_REG settings
 The Operation of Timer2 Module and its associated PR2 and T2CON registers
 The External interrupt on RB0.
 Context saving and retrieval while using interrupts.

DO NOT COME TO THE LAB UNPREPARED

The Idea behind the Code

The code is simply a 2-digit stopwatch (Max. 60 seconds) which has its output in decimal format shown on
2 Seven segments displays, it simply does the following:

1. Initially, when the system is display 00 on the 2 seven segments displays.
2. The stopwatch remains in this condition until a (Start/Stop) button is pressed, after which you will

observe the following count:

00, 01, 02,03,04,05... 58, 59, 00, 01…

3. The stopwatch will count this way indefinitely until the (Start/Stop) button is pressed again

where the count display will remain as is (Hold). When the (Start/Stop) button is pressed
another time it will continue counting from its last count.

Counting Example:

00, 00 (Start/Stop), 01, 02, 03, 04, 05, (Start/Stop), 05, 05, 05, (Start/Stop), 06, 07, 08 ……

2

How did we write this code?

 In this experiment we will use PIC16877A microcontroller and an oscillator with a value of 4

MHz
 We made the decision to use TMR0 to count time (1 second), and to use the external interrupt

RB0 as the Start_Stop button.
 We have also defined a register: Start_Stop , which if it has the value 0x00, then the stopwatch

will stop, if it has the value 0xFF then the stopwatch will count.
 Now, the first problem, if Fosc is 4 MHz, then the instruction cycle is 1µs, at this speed the

maximum count of TMR0 at maximum pre-scalar settings is 256 x 256 x 1µs = 65.536 ms which
is far below the one second time needed (1,000,000 µs).

So what do we do now?

Since we need to count 1,000,000 µs, use your mind, calculator, sheet of paper, pencil

and luck to find three numbers X, Y, Z (all under 255, maximum register width)

whereXxYxZ=

1,000,000 µs and with the condition that one of the numbers should satisfy 2N (one of
the values of TMR0 pre-scalar)

We have found that 250 x 32 x 125 = SEC_CALC No. of TMR0 Total Time

1,000,000 (notice that 32 = 25) so we do

Interrupts elapsed

the following: 0 0 0 ms

1 1 8 ms

 Let 32 be the pre-scalar
 2 2 16 ms

 3 3 24 ms

 250 be TMR0 count. (that is TMR0

4 4 32 ms

 will be initialized to 256 – 250 = 6)

5 5 40 ms

So each interrupt, TMR0 will count

124 124 992 ms

 32 x 250 = 8000 µs = 8 ms. 125 125 1000 ms (1 second)

 0 Cleared in order to count the next

 Each interrupt, a register which we second correctly

1 126 0 ms

 defined: SEC_CALC will be

2 127 8 ms

 incremented, nd it will be checked

 for the value 125 to know whether we reached 1 second or not.

Notice in the flow chart below that in order for the clock digits to update two conditions should
be satisfied:
1. One second has elapsed (SEC_CALC = 125)
2. The clock should be in the counting mode (START_STOP = 0xFF)

If either condition fails, the clock will not count but hold its previous count on the display
unchanged

3

 Start

Initialize I/O ports Initialization

Enable External and

Infinite Loop

TMR0 Interrupts

Configure TMR0

Settings

Interrupt

Clear Variables

 Context Saving

Clear SEC_CALC
 N

Is External Is TMR0

 Interrupt? Interrupt?

Is Low Digit Y
Y

Reinitialize TMR0

= 9 Complement

N Start_Stop Flag

 Increment SEC_CALC

Y

 Y Y

Clear Low Digit
Is START_STOP = Is SEC_CALC =

0xFF? 125?

Increment High N N

Digit

 Increment Low Digit

Is High
N

Digit = 6

Y

Clear High Digit

 Display Clock

 Context retrieval

 and exit ISR

N

In other words,

has one second

elapsed?

4

Do not forget to set the speed to 4MHz for this code in MPLAB

How to simulate this code in MPLAB?

You have learnt so far that in order to simulate inputs to the PIC, you usually entered them through the

Watch window. However, this is only valid and true when you are dealing with internal memory
registers. In order to simulate external inputs to the PIC pins, we are to use what is called a Stimulus.

There are multiple actions which you can

apply to an input pin, choose whatever

you see as appropriate to simulate your

program. Here we have chosen to

simulate the button press as a pulse.

1. Add Low_Digit, High_Digit

and Start_Stop to the

watch window.

2. Place a break point at line

79 (Instruction return).

This will allow us to see

the change to Start_Stop, if

0xFF the stopwatch

counts, else it stops.

3. Place another breakpoint

at line 105 (Instruction

return), this will allow us

to observe how Low_Digit

and High_Digit change

4. Run your code, you will
observe nothing except
that the values in the watch window are all zeros.

5. Now Press “Fire”, the arrow next to the RB0 in the Stimulus pin, what do you observe?
6. Now, press “run” again, observe how the values of Low_Digit and High_Digit change

whenever you reach the breakpoint.
7. Press “fire” again, how do the values in Low_digit and High_Digit change now?

5

Example Code

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

;**
; Connections:
; Input:
; Pushbutton : RB0
; Output:
; 7-segment A-G: PortD 0-6
; hardware requests : S6 set ON, first and second set ON,S1 ON ,S12 and S13 OFF
__CONFIG_DEBUG_OFF&_CP_OFF&_WRT_HALF&_CPD_OFF&_LVP_OFF&_BODEN_OFF&_PWRTE_O
FF&_WDT_OFF&_XT_OSC
;**
INCLUDE "P16F877A.INC"
;**
; CBLOCK Assignments
;**

CBLOCK 0X20

Delay_reg

STATUSTEMP

LOW_DIGIT ; holds the digit to be displayed on first 7-segment
HIGH_DIGIT ; holds the digit to be displayed on second 7-segment
SEC_CALC ; used in calculating the elapse of one second
START_STOP ; user defined flag which if filled with 1’s the stop watch

 ;counts, else halts
ENDC

;**
ORG 0X000

GOTO MAIN

ORG 0X004

GOTO ISR

;**
MAIN

CALL INITIAL

MAINLOOP
 CALL DisplayClock

GOTO MAINLOOP

;**
INITIAL

BANKSEL TRISA

CLRF TRISA ;TRISA and TRISD as outputs
CLRF TRISD

MOVLW
MOVWF

01

TRISB ;RB0 as input (External Interrupt enabled), RB1-RB7

 ; as outputs
BSF INTCON, GIE ;TMR0 and External Interrupts Enabled, their

 ; flags cleared
BSF INTCON, INTE

BSF INTCON, TMR0IE

BCF INTCON, INTF

BCF INTCON, TMR0IF
MOVLW 0XD4 ;PSA assigned to TMR0, Prescalar = 32, TMR0 clock source

 ;is the internal
MOVWF OPTION_REG ;instruction cycle clock, External interrupt is on the

 ;rising egde

 6

 7

53
54 BANKSEL ADCON1

55 MOVLW 06H
56 MOVWF ADCON1 ;set PORTA as general Digital I/O PORT
57
58 BANKSEL TMR0 ;TMR0 to update 256 – 6 = 250
59 MOVLW 0X06

60 MOVWF TMR0

61 CLRF LOW_DIGIT ;Initially, the number to be displayed is 00
62 CLRF HIGH_DIGIT

63 CLRF SEC_CALC ;0 ms has passed
64 CLRF START_STOP ;stopwatch is initially stopped
65 MOVLW 0FFH
66 MOVWF PORTD ;close all display
67 RETURN

68 ;**
69 ISR

70 BTFSC INTCON, INTF ;External Interrupt has higher priority

71 CALL START_STOP_SUB

72 BTFSC INTCON, TMR0IF

73 CALL TMR0_CODE

74 RETFIE

75 ;**
76 START_STOP_SUB

77 BCF INTCON, INTF ;clear external interrupt flag
78 COMF START_STOP, F ;thus halting or starting the stopwatch
79 RETURN
80 ;**
81 TMR0_CODE

82 BCF INTCON, TMR0IF ;Clear TMR0 Flag
83 MOVLW 0X06 ;Reinitialize TMR0 ;Reinitialize TMR0
84 MOVWF TMR0

85 INCF SEC_CALC, F

86 MOVLW .125 ;Assuming a clock of 4MHZ, we need ; Assuming a clock of 4MHz, we need
87 SUBWF SEC_CALC, W ; 250 * 32 * 125 = 1×106 µs = 1 sec ; 250 * 32 * 125 = 1x106 µs = 1 Sec
88 BTFSS STATUS, Z

89 GOTO ENDTMR0
90 BTFSC START_STOP, 0

91 CALL UPDATE_DIGITS ;if one second passed, update digits

92 ENDTMR0

93 RETURN

94 ;**

95 UPDATE_DIGITS
96 CLRF SEC_CALC ;Cleared so as to count the next 1 sec correctly
97 MOVF LOW_DIGIT, W ; If previous low digit is not 9, increment low digit
98 ;by one

99 SUBLW 0X09 ; else, increment high digit by one and clear low digit

100 BTFSC STATUS, Z

101 GOTO UPDATE_HIGH_DIGIT

102 GOTO UPDATE_LOW_DIGIT

103 END_UPDATE

104 CALL DisplayClock ; Update clock display

8

105 RETURN

106 ;**
107 UPDATE_LOW_DIGIT

108 INCF LOW_DIGIT, F

109 GOTO END_UPDATE

110 UPDATE_HIGH_DIGIT

111 CLRF LOW_DIGIT

112 INCF HIGH_DIGIT, F

113 MOVF HIGH_DIGIT, W

114 SUBLW 6 ; if high digit reaches 6 (that is number = 60, 1 Minute),
115 ;reset

116 BTFSC STATUS, Z

117 CLRF HIGH_DIGIT

118 GOTO END_UPDATE

119 ;**
120 DisplayClock ;7 segment digit multiplexing ; see appendix 3

121 MOVF LOW_DIGIT,W
122 CALL Look_TABLE

123 MOVWF PORTD

124 BCF PORTA,1 ;enable first 7_segment Display

125 CALL DELAY

126 BSF PORTA,1

127 MOVF HIGH_DIGIT,W

128 CALL Look_TABLE

129 MOVWF PORTD

130 BCF PORTA,0 ;enable second 7_segment Display

131 CALL DELAY

132 BSF PORTA,0

133 RETURN

134 ;**
135 Look_TABLE

136 ADDWF PCL , 1

137 RETLW B’11000000’ ;’0’

138 RETLW B’11111001’ ;’1’

139 RETLW B’10100100’ ;’2’

140 RETLW B’10110000’ ;’3’

141 RETLW B’10011001’ ;’4’

142 RETLW B’10010010’ ;’5’

143 RETLW B’10000010’ ;’6’

144 RETLW B’11111000’ ;’7’

145 RETLW B’10000000’ ;’8’

146 RETLW B’10010000’ ;’9’

147 ;*********************** delay subprogram ***************************************

148 Delay

149 MOVLW 0FFH

150 MOVWF Delay_reg

151 L1 DECFSZ Dealy_reg,F

152 GOTO L1

153 RETURN

154 END

Appendix 1 - Timer2 Module

Prepared by Eng. Enas Ja’ra

Timer2 is an 8-bit timer with a prescaler and a postscaler, , it is connected only to an
internal clock - (FOSC/4) and it has Interrupt on overflow feature.

Timer2 has 2 count registers: TMR2 and PR2. The size of each registers is 8-bit in which we
can write numbers from 0 to 255.The TMR2 register is readable and writable and is cleared
on any device Reset. PR2 is a readable and writable register and initialized to FFh upon
Reset.

Register TMR2 is used to store the “initial” count value (the value from which it begins to
count). Register PR2 is used to store the “ending” count value (the maximum value we
need/want to reach). ie: using Timer2 we can determine the started count value, the final
count value, and the count will be between these two values. The Timer2 increments from
00h until it matches PR2 and then resets to 00h on the next increment cycle.

Prescaler and Postscaler :
Each allows making additional division of the frequency clock source.
 Prescaler divides the frequency clock source BEFORE the counting takes place at the

register TMR2, thus the counting inside the TMR2 register is performed based on
the divided frequency clock source by the Prescaler.

 Postscaler divides the frequency that comes out of the Comparator again for the last
time. The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1
to 1:16 scaling) to generate a TMR2 interrupt if enabled (TMR2IF (PIR1 register bit
no 1)).

TIMER2 BLOCK DIAGRAM

9

All the necessary settings are controlled from with T2CON Register

T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits
T2CKPS1:T2CKPS0 (T2CON<1:0>).
00 = Prescaler is 1
01 = Prescaler is 4

1x = Prescaler is 16

TMR2ON: Timer2 On bit
TMR2ON (T2CON<2>)
1 = Timer2 is on
0 = Timer2 is off

TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits

TOUTPS3:TOUTPS0 (T2CON<6:3>).

0000 = 1:1 postscale

0001 = 1:2 postscale

0010 = 1:3 postscale

•
•

•
1111 = 1:16 postscale

10

Appendix 2- Watchdog Timer
Prepared by Eng. Enas Ja’ra

A watchdog timer (abbreviated to WDT) is a part of hardware that can be used to automatically

detect software anomalies and reset the processor if any occur. A watchdog timer can get a

system out of a lot of dangerous situations.

A watchdog circuit is a resistor/capacitor network inside the PIC. This provides a unique clock,

which is independent of any external clock that you provide in your circuit. Now, when the

Watchdog Timer is enabled, a counter starts at 00 and increments by 1 until it reaches FF. When

it goes from FF to 00 (which is FF + 1) then the PIC will be reset, irrespective of what it is

doing. The only way we can stop the WDT from resetting the PIC is to periodically reset the WDT

back to 00 throughout our program. Now you can see that if our program does get stuck for some

reason, the WDT will then reset the PIC, causing our program to restart from the beginning.

In order to use the WDT, we need to know three things. First, how long have we got before we

need to reset the WDT, secondly how do we clear it. Finally, we have to tell the PIC programming

software to enable the WDT inside the PIC.

WDT Times

The PIC data sheet specifies that the WDT has a period from start to finish of 18mS. This is

dependant several factors, such as the supply voltage, temperature of the PIC etc. The reason for

the approximation is because the WDT clock is supplied by an internal RC network. The time for

an RC network to charge depends on the supply voltage. It also depends on the component

values, which will change slightly depending on their temperature. So, for the sake of simplicity,

just take it that the WDT will reset every 18mS. We can, however, make this longer by

Prescaler. We can program this prescaler to divide the RC clock. The more we divide the RC clock

by, the longer it takes for the WDT to reset.

The prescaler is located in the OPTION register, bits 0 to 2 inclusive. Below is a table showing the

bit assignments with the division rates and the time for the WDT to time out, Remember these

times are irrespective of your external clock frequency.

 By default the prescaler is assigned to the other internal timer” TIMR0” . This means that we

have to change the prescaler over to the WDT.

11

Example:

Suppose we want the WDT to reset our PIC after about half a second as a failsafe.

From table the nearest we have is 576mS, or 0.576 seconds.

 We have to reset the “TMR0” to 0.

 reset the WDT and prescaler

 Assign the prescaler to the WDT.

 Select the appropriate prescaler.

Banksel TMR0 ; make sure we are in bank 0

clrf TMR0 ; TMR0=0;

Banksel OPTION ;switch to bank 1

clrwdt ;reset the WDT and prescaler

movlw b’00001101’ ;Select the new prescaler value

movwf OPTION ; and assign it to WDT

The CLRWDT instruction is used to clear the WDT before it resets the PIC. So, all we need to do is

calculate where in our program the WDT will time out, and then enter the CLRWDT command just

before this point to ensure the PIC doesn’t reset. If your program is long, bear in mind that you

may need more than one CLRWDT. For example, if we use the default time of 18mS, then we need

to make sure that the program will see CLRWDT every 18mS.

The CLRWDT instruction clears the WDT and the prescaler, if assigned to the WDT, and prevent it
from timing out and generating a device RESET condition.

Bit 2,1,0 Rate WDT Time
0,0,0 1:1 18mS
0,0,1 1:2 36mS
0,1,0 1:4 72mS
0,1,1 1:8 144mS
1,0,0 1:16 288mS
1,0,1 1:32 576mS
1,1,0 1:64 1.1Seconds
1,1,1 1:128 2.3Seconds

12

Example:

This subroutine lights one LED on an 8-LED-row and continuously moves back and forth in this

fashion.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

;**
 include "p16f917.inc"
;**
COUNT1 equ 20H ; DELAY Loop register.
COUNT2 equ 21H ; DELAY Loop register.
COUNT equ 22H
;**
ORG 0x00
 goto initial
;**
initial
 clrf TMR0 ;Clear TMR0
 Banksel TRISB
 clrwdt ;reset the WDT and prescaler
 movlw b'00001011' ;Select the prescaler value and assign
 movwf OPTION_REG ;it to WDT,WDT time to reset 144mS
 bsf STATUS,RP0
 movlw 00H
 movwf TRISB
 bcf STATUS,RP0
 movlw 8
 movwf COUNT

MAIN
 movlw 01H
 movwf PORTB

Rotate_Left ; Move the bit on Port B left, then right.
 call DELAY
 rlf PORTB, F
 btfss STATUS, C
 goto Rotate_Left
Rotate_Right
 call DELAY
 rrf PORTB, F
 btfss STATUS, C
 goto Rotate_Right
 goto Rotate_Left
; **
 ; Subroutine to give a delay between bit movements.
 ;Total of 42.7 mS
; **
DELAY
 MOVLW 0X6F
 MOVWF COUNT2
L11 MOVLW 0X7F
 MOVWF COUNT1

LOOP2
 DECFSZ COUNT1, F
 GOTO LOOP2
LOOP1

 DECFSZ COUNT2, F
 GOTO L11
 CLRWDT ; This simply resets the WDT.
 return ; Return from our original DELAY subroutine

 END

13

 The instruction at Line 59 resets the WDT, Comment out or removes this command to see the

WDT in action. It should reset the PIC.

 If you comment out, or remove the CLRWDT command, you will find that the PIC will not go

past lighting the fifth LED. This is because the WDT is resetting the PIC. With the CLRWDT in

place, the program works as it should.

Appendix 3- 7 Segment Multiplexing

Some kits like QL 200 development kit provide multiplexed multi 7 segment digit displays

in single packages; Multiplexed displays are electronic displays where the entire display

is not driven at one time. Instead, sub-units of the display are multiplexed.

 In multiplexed 7 segment applications (see Figure 1) the LED segments of all the digits

are tied together so if you send date to any one of the segment , it will displayed on both

segments to prevent that the common pins of each digit are turned ON separately by the

microcontroller. When each digit is displayed only for several milliseconds, the eye

cannot tell that the digits are not ON all the time. This way we can multiplex any number

of 7-segment displays together. For example, to display the number 24, we have to send 2

to the first digit and enable its common pin. After a few milliseconds, number 4 is sent to

the second digit and the common point of the second digit is enabled. When this process

is repeated continuously, it appears to the user that both displays are ON continuously.

 The display can be controlled from the microcontroller as follows
 Send the segment bit pattern for digit 1 to segments a to g
 Enable digit 1.
 Wait for a few milliseconds.
 Disable digit 1.
 Send the segment bit pattern for digit 2 to

segments a to g
 Enable digit 2
 Wait for a few milliseconds
 Disable digit 2.
 Repeat the above process continuously

14

Figure 1: Two multiplexed 7-segment

displays

http://en.wikipedia.org/wiki/Multiplexing

University of Jordan

Faculty of Engineering and Technology

Department of Computer Engineering

Embedded Systems Laboratory 0907334

Objectives
 Introduce the USART module of the PIC 16series through an

industrial example.

 To become familiar with the serial communications using PIC and
RS232 Protocol.

 Become familiar with serial communication testing techniques

either in software and hardware

8

Experiment 8:The USART

Pre-lab
You are required to review the following in order to be fully prepared for the experiment, refer back to

both your text book and the Microchip PIC datasheets whenever you find it necessary.
 The general operation of the USART in asynchronous mode.

 Familiarize yourself with the following registers and their individual

bit functions: TXSTA, RCSTA, TXREG, RCREG, and SPBRG.
 Calculating baud rate speeds.
 The PIE and PIR registers in the 16F877A.

The Idea behind the Code

In a certain factory, a modern computerized machine is serially connected to a control computer. Once

the machine is powered on, it sends a message to the control room indicating that it is ready to receive

commands. After reading the message, an operator sends commands to the machine through the control

computer. In this experiment, since the there is no physical machine to carry out the commands, the

commands will be simply displayed on 7 segments display.

The simple flow of the program is:

 Initialize I/O, enable interrupts, configure USART settings: baud rate, transmitter and receiver

settings
 Send message to control computer
 Wait continuously “Loop” until commands are received from control computer, when received

display them on 7 segments display

STEP 1: INITIALIZE I/O, ENABLE INTERRUPTS …

 RC6 is reserved by Microchip design specifications for serial data transmission, therefore
configure as o/p

 RC7 is reserved by Microchip design specifications for serial data reception, therefore configure

as i/p
 PORTD will be connected to the 7 segments display, so configure as o/p

 Baud rate is agreed to be 9600 bps, review datasheet or do hand calculations to find that SPBRG

has to be filled by 25 and high baud rate will be enabled (BRGH = 1) in order to achieve this
speed.

 Enable serial port (SPEN = 1), enable receiver (CREN = 1), enable transmitter (TXEN = 1)
 Since we want to use asynchronous mode (SYNC = 0).

 We have agreed to use receiver interrupt to know whether the machine received commands

from the control station or not, so (GIE = 1), (PEIE = 1) and (RCIE = 1).

STEP 2: SEND MESSAGE TO CONTROL COMPUTER

The machine status message which reads “Machine ready to receive commands” has a length of 33
characters and is sequentially stored in a look up table. Where the first entry in the table is the letter

“M”, the second is “a”, third is “c” and so on … To send the message, the look-up table is to be accessed

33 times with the first time adding 0 to PCL to retrieve “M”, the second time adding 1 to PCL to retrieve

“a”, the third time adding 2 to PCL to retrieve “c” and so on … The message length is stored in a variable

which is decremented each time the look up table is accessed and is checked to see if this variable

reached 0 or not to indicate end of message.

2

After each message character is retrieved from the look-up table it is sent to TXREG, assuming the
USART is configured properly, the character will be serially sent at the designated speed.

We can’t send the next character immediately to TXREG while there is data still being transmitted or

residing in the transmitter’s TXREG, this will overwrite the data to be transmitted and therefore be lost.

In consequence, we have four ways to detect if transmission of the previous frame has finished or not

before sending the next one:

1. Use Interrupts (when transmission is finished, program flow will be interrupted and you can send the

next character inside ISR)

2. Poll the TXIF interrupt flag found in PIR1 register

3. Poll the TRMT flag found in TXSTA register (which is the method employed in this experiment)

4. Insert a time delay calculated to be larger than the delay time needed to transmit the character
frame Ex. If speed is 9600 bps, this means the time needed to send a frame asynchronously is:

9600 1,000,000µs (1s)

10 X
X = 1041 µs = 1.041ms so insert a delay larger than this value before transmitting the next frame.

After the whole message is sent, the code goes into an infinite loop waiting to receive commands.

STEP 3: COMMANDS ARE RECEIVED FROM CONTROL COMPUTER

When characters are received from a control computer, the character frame will reside in the RCREG

register and the RCIF flag will be set high (Remember that interrupt flags are set high whenever their

event occurs regardless whether the sources were enabled or not). But how do we know the moment

the command is received and ensure that we get all commands without losing any of them?

Similar to what has been discussed above. We have three methods to ensure data is read at sufficient
time periods without any data loss:

1. Use Interrupts (which is the method employed in this experiment, when a command is received,
the program flow will be interrupted and you can read RCREG inside ISR)

2. Poll the RCIF flag found in PIR1 register

3. Periodically read RCREG at sufficient time intervals.

3

Another important issue is how to check if the date received is erroneous or not? There are two types of
errors in serial data communications which the PIC can detect and flag:

1. Framing errors occur due to the difference in the speed of communication between the

transmitter and receiver (not correctly set to match each other). This error is detected when a

stop bit is received as CLEAR and the framing error bit (FERR) in the RCSTA register is set to

indicate occurrence. The FERR pin is set/cleared for every frame received to indicate if there is

speed mismatch! Therefore, the FERR value will be updated with every coming frame and it is

necessary to read RCSTA value before RCREG to check if we are receiving the data correctly.

2. Overrun errors: The receiver module has a two-level deep buffer in which the received data is

stored. Data received in the RSR register ultimately fill the buffer. However, if the two buffer

locations are already occupied, and a third frame of data is being shifted into the RSR, once it is

complete, it will not be stored in the buffer and thus be lost, and hence an overrun error occurs.

Flag OERR in the RCSTA register is set to indicate this error occurrence. Once this OERR bit is

set, no further data is received! The FIFO buffer is cleared by reading data in the RCREG, that is,

it needs two RCREG reads to empty the buffer! Furthermore, once set, the OERR bit can only be

cleared in software by clearing and setting the CREN bit. To avoid overrun errors, the user

should always make sure to read data at appropriate speeds such that the buffers won’t become

full!

3. Parity Errors: used to detect odd number of erroneous bit transmissions. This is done by

enabling the 9th bit mode in the RCSTA register “RX9 bit”. However, no hardware is present to

calculate and check for parity, therefore, the sender should write appropriate code to calculate
desired parity (odd/even) and place the result in the TX9D pin in the TXSTA register before
sending the frame. An equivalent code should read the received parity RX9D from the RCSTA
register calculate parity and check for a match!

4

Code Example

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

Function

In a certain factory, a modern computerized machine is serially connected to a control computer.
Once the machine is powered on, it sends a message to the control room indicating that it is
ready to receive commands. After reading the message, an operator sends commands to the
machine through the control computer. In this experiment, since the there is no physical
machine to carry out the commands, the commands will be simply displayed on 7 segments
display.
;
The simple flow of the program is:

1. Initialize I/O, enable interrupts, configure USART settings: baud rate, transmitter and
receiver settings

2. Send message to control computer
3. Wait continuously “Loop” and wait until commands are received from control computer,

when received display them on 7 Segments Display

;Hardware Connections

Inputs
RC7: USART Receiver pin

Outputs
RC6: USART Transmitter pin
PORTD 0 -6: 7 segment display
RA0 is connected to 7-Segment Digit Enable

;**
include "p16f9877a.inc"

;**
; User-defined variables

cblock 0x20
WTemp ; Must be reserved in all banks
StatusTemp ; reserved in bank0 only
Counter
BLNKCNT
MSG

endc
cblock 0x0A0

WTemp1
endc
cblock 0x120

WTemp2
endc
cblock 0x1A0

WTemp3
endc

;**
; Macro Assignments

push macro

 movwf WTemp ;WTemp must be reserved in all banks
 swapf STATUS,W ;store in W without affecting status bits
 banksel StatusTemp ;select StatusTemp bank
 movwf StatusTemp ;save STATUS
 endm

pop macro

 banksel StatusTemp ;point to StatusTemp bank
 swapf StatusTemp,W ;unswap STATUS nibbles into W

5

54 movwf STATUS ;restore STATUS (which points to where W was

55 ;stored)

56 swapf WTemp,F ;unswap W nibbles

57 swapf WTemp,W ;restore W without affecting STATUS

58 endm
59 ;**
60 ; Start of executable code
61 org 0x00 ; Reset Vector

62 goto Main

63 org 0x04 ; Interrupt Vector

64 goto IntService

65 ;**
66 ; Main program
67 ; After Initialization, this code sends the message: "Machine ready to receive commands" then
68 ; goes into an infinite loop during which, the program is interrupted if data is received.
69 ;**
70 Initial
71 movlw D'25' ; This sets the baud rate to 9600

72 banksel SPBRG ; assuming BRGH=1 and Fosc = 4.000 MHz

73 movwf SPBRG

74

75 banksel RCSTA

76 bsf RCSTA, SPEN ; Enable serial port

77 bsf RCSTA, CREN ; Enable Receiver

78

79 banksel TXSTA

80 bcf TXSTA, SYNC ; Set up the port for Asynchronous operation

81 bsf TXSTA, TXEN ; Enable Transmitter

82 bsf TXSTA, BRGH ; High baud rate used

83

84 banksel PIE1 ; Enable Receiver Interrupt

85

 bsf PIE1,RCIE

banksel INTCON

86

87 bsf INTCON, GIE ; Enable global and peripheral interrupts

88 bsf INTCON, PEIE

89 banksel TRISD

; PORTD is used to display the received commands

90
clrf

 TRISD

91 clrf TRISA

92 bcf TRISC, 6 ; Configuring pins RC6 as o/p, RC7 as i/p for

93 bsf TRISC, 7 ; serial communication
94 movlw 06

95 movwf ADCON1

96

97 banksel PORTD

98 clrf PORTD

99 clrf PORTA

100 return

 101 ;***

102
Main

103 Call
Initial

104 MainLoop
 ; Prepare to send first character in the message MSG = 0

105 Clrf MSG ; then incremented by on to access every character in

106 ;.look up table

107

6

108 SEND

109 movf MSG, W

110 call Message

111 movwf TXREG

112 TX_not_done

113 banksel TXSTA ; Polling for the TRMT flag to check

114 btfss TXSTA, TRMT ; if TSR is empty or not

115 goto TX_not_done

banksel MSG

116

incf MSG, F ; Move to next character in string

117

movlw .33 ; Check if the whole message has been sent

118

subwf MSG, W ; "Message length = 33"

119

btfss STATUS, Z

120

goto SEND

121

Loop

122

123 Goto Loop ; When whole message is sent, loop and wait

; for receiver interrupts.

124

;**

125

126 ; Interrupt Service Routine

127 IntService

128 push

btfsc PIR1, RCIF ; Check for RX interrupt

129

call RX_Receive

130

pop

131

retfie

132

RX_Receive

133 bcf PIR1, RCIF ;Pass the value of RCREG to PORTD

134 ;**
135 ; Uncomment the following piece of code if error detection is required. Note that it is
136 ; recommended to detect for serial transmission errors
137 ;**
138 ;banksel RCSTA
139 ;btfsc RCSTA, FERR ;Check for framing error

140

;goto FramingError

141

;btfsc RCSTA, OERR ;Check for Overrun error

142

;goto OverrunError

143

banksel RCREG

144 movf RCREG, W

145

banksel PORTD

146 CALL Look_TABLE

147 movwf PORTD

148 return

149

150 Look_TABLE

151 ADDWF PCL , 1

152 RETLW B’11000000’ ;’0’

153 RETLW B’11111001’ ;’1’

154 RETLW B’10100100’ ;’2’

155 RETLW B’10110000’ ;’3’

156 RETLW B’10011001’ ;’4’

157 RETLW B’10010010’ ;’5’

158 RETLW B’10000010’ ;’6’

159 RETLW B’11111000’ ;’7’

160 RETLW B’10000000’ ;’8’

161 RETLW B’10010000’ ;’9’

7

 162 Message

163 addwf PCL, F

164 retlw A'M'

165 retlw A'a'

166 retlw A'c'

167 retlw A'h'

168 retlw A'i'

169 retlw A'n'

retlw A'e'

170

retlw A' '

171

retlw A'r'

172

retlw A'e'

173

retlw A'a'

174

retlw A'd'

retlw A'y'

 retlw A' '

 retlw A't'

 retlw A'o'

 retlw A' '

 retlw A'r'

 retlw A'e'

 retlw A'c'

retlw A'e'

retlw A'i'

retlw A'v'

retlw A'e'

retlw A' '

 retlw A'c'

 retlw A'o'

 retlw A'm'

 retlw A'm'

 retlw A'a'

 retlw A'n'

 retlw A'd'

 retlw A's'

 END

 ;**

CODE TESTING

At first glance, you might think that you cannot test your code unless you have a physical control

PC and a machine at home!! Surely this is not feasible. Therefore we will now introduce you to
testing USART serial communication in MPLAB IDE.

MPLAB TRANSMITTER TESTING

After Building your project in MPLAB do
the following procedure:

1. Debugger Select Tool MPLAB SIM
2. Debugger Settings Uart1 IO
3. The following screen will show up:
4. Select Enable Uart1 IO
5. Select the output to be shown in Window
6. Click Ok

Now, if the output window is not already
shown, go to View Output

8

Notice that a new tab (SIM Uart1) has shown up as shown below:

Now run the program, you will see that the message has appeared in the Uart1 IO window which we
have already enabled. See screenshot below:

MPLAB RECEIVER TESTING
We will test the receiver the same way we used to test for external inputs: using stimulus.

The procedure will be revisited here again:
1. Debugger Stimulus New Workbook

2. In the Async tab choose RCREG, and the action as Direct Message, in the Message field type

in the character you wish to send.
3. Press fire, by doing so the character “7” will be received in RCREG

4. Place a break point at instruction goto IntService .
3. Since the received character is displayed on 7 segment display which are connected to

PORTD, use the watch window, check if “11111000” has been actually sent to PORTD

IN-LAB TESTING PHASE 2

 TRANSMITTER TESTING

 Double click on the “Docklight” program icon found on the desktop.

The “Docklight” program is a tool through which we can establish serial communication

between two PC’s or a PC with other devices. We can send, receive and view data in

different formats: ASCII, hex and decimal.

 Press Ok to the message that appears then “Start with a blank project”
 In “Docklight”, go to Tools Project Settings

9

A window will appear through which we can set the communication session settings, set the com port

used to COM1, configure the baud rate speed to match that used by the other device/PC, set number of
stop bits used and so on. Check the settings we will use in this experiment as seen below:

 Press Ok to save your settings.

 Now we have to start the communication session between the PC and the kit, press the play

button or press F5 to open communication port.

 Download the program to the PIC16F877A;
 Connect the kit to the PC through a serial RS232 cable. Be sure to connect the cable to COM1

of the PC. In this scenario, the kit will act as the machine and the PC will act as the control
computer which will receive machine status and send commands.

 Now the PC (control room) is configured properly to receive status and send commands

 Switch back to “Docklight”, make sure that the window format is ASCII; you will be able to read

the message which has been sent by the PIC to the PC. WOW

10

RECEIVER TESTING

To send data to the kit (machine) start with the following:

We will start with preparing the frame
 Double click on the space shown:

 Give the data sequence you want to send a name (optional)
 Choose the data format you want to see (decimal)
 Fill in the data you want to send then click OK

11

 So far we have not yet transmitted the data to do so

Click on the fire button

12

Capturing the frame sent/received by the USART using a Digital
Oscilloscope

Digital oscilloscopes provide an easy way to capture signals using the “AutoSet” function provided with

most models. However, this function is not feasible for use with non periodic signals especially those

that are at high frequencies which is the case in this experiment; we are to capture and view a

transmitted or received frame at baud rates of 9600 or more. Even using manual setting and pressing

the “Stop” button will not be that easy as transmission and reception speed increases. Therefore, we are

to use the trigger function which modern oscilloscopes offer.

The trigger event is usually the input waveform reaching some user-specified threshold voltage in the

specified direction (going positive or going negative). Trigger circuits allow the display of non-periodic

signals such as single pulses or pulses that don't recur at a fixed rate.

The DS1150 Digital Oscilloscope

1. In this experiment, connect the oscilloscope probe to CH1 and use the hook at the other end to

connect to RC7 pin (Receiver) through a wire. Connect the probe GND to that of the
Mechatronics board (Optional). – See figure below!

13

2. Make sure that the orange slider of the oscillator’s probe is at X1 option.
3. Power on the oscilloscope
4. Press Autoset (if the probe is not connected to the circuit, this resets the oscilloscope)
5. Set Voltage/Div value on CH1 to 5 Volts using the knob.

6. Set the time division to 0.2 ms (remember that we have calculated above that the whole frame

will take 1.041 ms to be sent, therefore we need a smaller time division in order to see the

whole frame fit on the oscilloscope screen).

Oscilloscope Screenshot after settings

14

7. On the right side of the oscilloscope you will see a set of trigger buttons, press the “Source”
button as many times until you see that the trigger is on CH1 (Upper left corner of the screen)

8. Press the trigger’s “Menu” button then select the following options using the 5 blue buttons to

the right of the oscilloscope’s screen:

 Select CH1 (other options include

CH2, Line and EXTernal), you will

see your selection at the upper left

corner of the oscilloscope’s screen.
 Change the coupling to “DC”,

 Edge to “Falling” (since we are to

detect the beginning of the frame,

which is a transition from idle state

to start bit state (Logic 1 to Logic 0 at

pin RC7)

 Finally set the Mode to “Single” since
we are to detect only one frame.

9. Make sure that all your connections are

correct and firmly fixed, review your

oscilloscope and Docklight settings, after

which use the Docklight program to send the

hex value 0x65 as an example.

10. The frame should now appear on the screen,

draw it here:

11. Now, you will notice that the screen has frozen to show this frame, to view other frames, press

the STOP/RUN button, now the oscilloscope is ready to receive and display new frames.

15

Page 1 of 9

University of Jordan

Faculty of Engineering and Technology

Department of Computer Engineering

Embedded Systems Laboratory 0907334

Objectives
 To familiarize you with the built-in A/D hardware module.

Pre-lab requirements

 Review the PIC16F877A datasheet section on the AD module.

Appendix A quickly reviews the AD module

 Written by Eng. Enas Jaara |

9

Experiment 9: ANALOG-TO-DIGITAL
CONVERTER (A/D) MODULE

Page 2 of 9

Overview

An analog to digital converter converts analog voltages to digital information that can be used by a
computer. In almost in all digital systems, there is a frequent need to convert analog signals
generated by peripheral devices such as microphones, sensors, and etc. into digital values that can
be stored and processed. As an example, temperature and brightness are changing continuously.
This experiment will focus on A/D conversion by using the PIC16F877A Analog-To-Digital
Converter.

The idea behind the code

Select RAO as input connected to potentiometer, get the result of a A/D conversion, convert the
result into the BCD format and finally the result (the only low 8 bits) will be displayed on three 7-
segment displays, The 7 segments display will use Time Division Multiplexing to display a 3-digit
values.

A Detailed View of the Interworking of the System
Based on the above discussion, we will further elaborate how this system works.

1. Initially, the system should be initialized as follows:

 We need to connect an analogue signal to the PIC, we shall use either one of PORTA or

PORTE, since both offer analogue input interfacing to the PIC. We will specify which

PORT and which exact pin of the port to be used as analogue or digital through the use

of the ADCON1 register. In this experiment we chose RA0 as the analogue input

(corresponding to channel 0 “AN0” of the AD module)

 We will configure the AD module as follows, power on the module (set ADON), and

choose the analogue channel 0 “AN0” as the analogue input of the AD module by setting

CH2, CH1 and CH0 as zeros. We will set the voltage references to be between 0 and 5

volts (why?) and finally the result is to be right justified, that is the lower 8-bits will

reside in ADRESL and the higher 2 bits will reside in ADRESH. In this program, we will

choose to ignore ADRESL and only deal with the 8-bit digitized value to simplify

program development.

 We chose a conversion speed of Fosc/8, therefore ADCON1 will have the value of 0x8E

 We implemented the code such that the main functionality is to convert analogue
signals into digital ones and save them into ADRESL in a continuous fashion such that
we will always have updated and recent values of the potentiometer, this is the code of
the main subroutine will have all other actions: CHANGE _To_BCD ,this subroutine is
used to convert the result of the conversion into BCD values (Units , Tens , Hundreds),
then display the result on the 7 segment display , Time Division Multiplexing used to
display a 3-digit values(Units , Tens , Hundreds).

2. As stated above, the main subroutine is to continuously update ADRESL register with a recent

digitized value of the potentiometer. The routine starts by starting the conversion process (bsf

ADCON0, GO), the value of ADRESL is not read until we are sure that the conversion process has

truly finished. This is done through polling the ADIF flag (remember that we have not enabled

the interrupt for AD, yet the flags of interrupts are set and cleared no matter whether they were

enabled or not, this is why polling is possible). When the conversion is finished, the value of

ADRESL is copied into TEMP register in order to display it on the 7 segment display!

Page 3 of 9

The steps should be followed for doing an A/D Conversion:

• Port configuration
The I/Os pin should be configured as analog by setting the associated TRIS and

PCFG3:PCFG0 bits.

• Channel selection

The CHS bits of the ADCON0 register.

• ADC voltage reference selection
The PCFG bits of the ADCON1 register.

•ADC conversion clock source
The source of the conversion clock is software selectable via the ADCS bits of the

ADCON1 and ADCON0 registers.

• Interrupt control
The ADC module allows for the ability to generate an interrupt upon completion of

an Analog-to-Digital conversion, but we have chosen to use the ADC without

interrupts and use polling instead.

•Results formatting
The ADFM bit of the ADCON1 register controls the output format.

• ADC module configuration

•Turn on ADC module
To enable the ADC module, the ADON bit of the ADCON0 register must be set to a ‘1’.

Page 4 of 9

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;Main Subroutine;;

This subroutine shows theA/D Conversion Procedure.

Start conversion by setting the GO/DONE bit. Poll the AD interrupt flag ADIF

(interrupts disabled) to check whether conversion has finished or not. Clear the ADC

interrupts flag (required). Finally Read ADC Result found in ADRESH and/or

ADRESL. Convert Result into BCD Format and display it on the 7 segments displays.

Is ADIF =1

(Wait for conversion to

complete)

NO

Clear the A/D interrupt flag

ADC module

configuration

Display Result on 7 segments displays

Initial

YES

Get A/D Result

Set the GO/DONE bit.

Convert A/D Result to BCD

Main
 MOVLW 8EH ;A/D data right justified
 MOVWF ADCON1 ; RA0 is analogue input
 Banksel PORTA ;BANK 0
 MOVLW 41H ;A/D enabled
 MOVWF ADCON0 ;select CLOCK is fosc/,
 CALL DELAY
 BSF ADCON0,GO ;startup ADC divert
WAIT
 BTFSS PIR1,ADIF ;Is the convert have finished?
 GOTO WAIT ; wait for the convert finished
 bcf PIR1, ADIF ; Clear the A/D flag
 Banksel TRISA
 MOVF ADRESL,W ;read the result of convert
 Banksel PORTA
 MOVWF TEMP ; keep in temporary register
 CALL CHANGE_To_BCD ; call result convert subr.
 CALL DELAY
 CALL DISPLAY ; call display subroutine
 CALL DELAY
 GOTO Initial ; Do it again

Page 5 of 9

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 ;**
;Code Function:Select RAO as input connected to potentiometer,
;get the result of a A/D conversion ,convert the result into the BCD format
; and finally the result (the only low 8 bits) will be displayed on 7-segment displays.

#INCLUDE<P16F877a.INC>

TEMP EQU 20H ;temporary register
hundreds EQU 21H ;the hundred bit of convert result
tens EQU 22H ;the ten bit of convert result
units EQU 23H ;the ones bit of convert result
;**
 ORG 00H
 NOP
 GOTO Initial

;*******************Initial subroutine*****************************
Initial
 CLRF hundreds
 CLRF tens
 CLRF units
 Banksel TRISA ;select bank 1
 MOVLW 01H ;PORTA bit Number0 is INPUT
 MOVWF TRISA
 CLRF TRISD ;All of the PORTD bits are outputs
;***********************MAIN program***********************
Main
 MOVLW 8EH ;A/D data right justified
 MOVWF ADCON1 ;only select RA0 as ADC PORT,the rest are data PORT
 Banksel PORTA ;BANK 0
 MOVLW 41H
 MOVWF ADCON0 ;select CLOCK is fosc/8,A/D enabled
 CALL DELAY ;call delay program,ensure enough time to sampling
 BSF ADCON0,GO ;startup ADC divert
WAIT
 BTFSS PIR1,ADIF ;is the convert have finished?
 GOTO WAIT ;wait for the convert finished
 Bcf PIR1, ADIF ; Clear the A/D flag
 Banksel TRISA
 MOVF ADRESL,W ;read the result of convert
 Banksel PORTA
 MOVWF TEMP ;keep Result in temporary register
 CALL CHANGE_To_BCD ;call result convert subroutine
 CALL DELAY
 CALL DISPLAY ;call display subroutine
 CALL DELAY
 GOTO Initial ;Do it again
;************************Convert subroutine********************
CHANGE_To_BCD
gen_hunds
 MOVLW .100 ;sub 100,result keep in W
 SUBWF TEMP,0
 BTFSS STATUS,C ;judge if the result biger than 100
 GOTO gen_tens ;no,get the ten bit result
 MOVWF TEMP ;yes,result keep in TEMP
 INCF hundreds,1 ;hundred bit add 1
 GOTO gen_hunds ;continue to get hundred bit result
gen_tens
 MOVLW .10 ;sub 10,result keep in W
 SUBWF TEMP,0
 BTFSS STATUS,C ;judge if the result biger than 10
 GOTO gen_ones ;no,get the Entries bit result
 MOVWF TEMP ;yes,result keep in TEMP
 INCF tens,1 ;ten bit add 1
 GOTO gen_tens ;turn to continue get ten bit

Page 6 of 9

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

gen_ones
 MOVF TEMP,W
 MOVWF units ;the value of Entries bit
 RETURN

;**************************Display subroutine********************

DISPLAY
 MOVF hundreds,W ;display Hundreds bit
 CALL TABLE
 MOVWF PORTD
 BCF PORTA,3
 CALL DELAY
 CALL DELAY
 BSF PORTA,3

 MOVF tens,W ;display Tens bit
 CALL TABLE
 MOVWF PORTD
 BCF PORTA,4
 CALL DELAY
 CALL DELAY
 BSF PORTA,4

 MOVF units,W ;display Units bit
 CALL TABLE
 MOVWF PORTD
 BCF PORTA,5
 CALL DELAY
 CALL DELAY
 BSF PORTA,5
 RETURN

;***
TABLE
 ADDWF PCL, 1
 RETLW B'11000000' ;'0'
 RETLW B'11111001' ;'1'
 RETLW B'10100100' ;'2'
 RETLW B'10110000' ;'3'
 RETLW B'10011001' ;'4'
 RETLW B'10010010' ;'5'
 RETLW B'10000010' ;'6'
 RETLW B'11111000' ;'7'
 RETLW B'10000000' ;'8'
 RETLW B'10010000' ;'9'

;***************************Delay subroutine***********************
DELAY
 MOVLW 0xFF
 MOVWF TEMP
L1 DECFSZ TEMP,1
 GOTO L1
 RETURN

;***
 END ;program end

Page 7 of 9

Appendix A

Analog-to-Digital Conversion (ADC)

An analog-to-digital converter, or simply ADC, is a module that is used to convert an analog signal

into a digital code. In the real world, most of the signals sensed and processed by humans are

analog signals. Analog-to-digital conversion is the primary means by which analog signals are

converted into digital data that can be processed by Microcontroller for various purposes.

Sensors signals is an analog quantity, and digital systems often use signals to implement

measurement, control, and protection functions so it is the necessary to convert the analog signal

to digital information.

There's generally a lot of confusion about using the A/D inputs, but it's actually really very simple -

it's just a question of Extraction the information you need out of the datasheets.

There are four main registers associated with using the analogue inputs; these are summarized in

the following table:

Main registers used for Analog-to-Digital Conversion.

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ADRESH A/D Result Register - High Byte

ADRESL A/D Result Register - Low Byte

ADCON0 ADCS1 ADCS0 CHS2 CHS1 CHS0 GO/DONE - ADON

ADCON1 ADFM ADCS2 - - PCFG3 PCFG2 PCFG1 PCFG0

 ADCON0 and ADCON1 are the registers that control the A/D conversation process.

 ADRESH and ADRESL are the registers that return the 10-bit result of the analogue

to digital conversion, the only slightly tricky thing about them is that they are in

different memory banks.

RESULT FORMATTING:

The 10-bit A/D conversion result can be supplied in two formats, left justified or

right justified. The desired formatting is chosen by sitting the ADFM bit in the ADCON0

register.

Page 8 of 9

ADCON0 Details

ADON (bit 0), turns the A/D On (when = 1) or off (when = 0), thus saving the power it

consumes.

 GO/DONE (bit 2), this bit has a dual function, the first is that by setting the bit it initiates

the start of the analogue to digital conversion process, the second is that when the bit is

automatically cleared when the conversion is complete, it can be polled to check if

conversion has ended before initiating a subsequent conversion.

CHS2, CHS1 and CHS0 (bits 3 - 5), the

channel selection bits, choose one channel

among the available eight AD analogue

channels and specify which one is to be used

as an input for the AD module for digitization.

Be careful that the first five channels AN0-

AN4 map to pins (RA0-RA3, RA5). Further

notice that AN4 uses digital pin RA5, not RA4

as you would expect. And the remaining three

channels AN5-AN7 map to pins (RE0-RE2).

See adjacent figure.

ADCS1 and ADCS0 (bits 6 - 7): A/D

Conversion Clock Select bits (see ADCS2)

CHS2 CHS1 CHS0 Channel Pin

0 0 0 Channel0 RA0/AN0

0 0 1 Channel1 RA1/AN1

0 1 0 Channel2 RA2/AN2

0 1 1 Channel3 RA3/AN3

1 0 0 Channel4 RA5/AN4

1 0 1 Channel5 RE0/AN5

1 1 0 Channel6 RE1/AN6

1 1 1 Channel7 RE2/AN7

Left justified

Right justified

justified

Page 9 of 9

ADCON1 Details

 ADFM (bit 7), the Result Format Selection Bit, selects if the output is Right Justified (bit

set) or Left Justified (bit cleared). For full digitization precision, the whole 10 bits are to be

used.

ADCS2 (bit 6), which set the clock

frequency used for the analogue to

digital conversion, this clock is

divided down from the system clock

(or can use an internal

oscillator), bit 4 and bit 5

Unimplemented: Read as ‘0’.

PCFG3:PCFG0 (bit

3:0): A/D Port

Configuration

Control bits

Example

If we make

ADCON1 = 0x80,

then we have 8

analog channels,

and Vref+ =

VDD, and Vref- =

Vss.

ADCON1

ADCS2

ADCON0

<ADCS1:ADCS0>
A/D Conversion Clock Select bits.

0 0 0 Fosc/2

0 0 1 Fosc/8

0 1 0 FOsc/32

X 1 1 FRC (clock derived from a dedicated

Internal oscillator = 500 kHz max.)

1 0 0 Fosc/4

1 0 1 Fosc/16

1 1 0 Fosc/64

	Experiment 0
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Experiment 6
	Experiment 7
	Experiment 8
	Experiment 9

