[image: Logo1]

University of Jordan
School of Engineering
Department of Mechatronics Engineering
Microprocessor and Microcontroller Laboratory
0908432
Exp. 6: Hardware/Software Timers

Objectives
1- To become familiar with different methods of generating time delays.
2- To demonstrate an application of table lookup.
3- To see an application of macros and methods of utilizing them.
4- To use the debugging facility of the MPLAB IDE to fix program bugs.
5- To demonstrate the use of internal interrupts linked with the timer0 module of the 16F877.

Pre-lab Preparation:
1- Review the sections in the book regarding methods of generating time delays.
2- Review the sections in the book dealing with the timer/counter peripheral.
3- Review the instruction set of the PIC 16.
4- Study the assembly code listings of accompanying programs. (Very important).1
5- Draw a flow diagram for the code and submit it in the beginning of the lab
Procedure:
The assembly code written below operates a PIC16F877A that controls a bottle filling machine. The bottles pass through a conveyer belt. When the photocell sensor detects a bottle, the conveyer belt must stops and the filling operation starts by:

1) Stop Conveyer Motor. 2) Start Filling Motor.
3) Wait one Second. 4) Stop Filling Motor. 5) Start Conveyer Motor.

there is a one digit seven segment display that count the filled bottles and every three bottles it resets (Zero appear on the seven segment) and the buzzer make a sound for 64ms. The code uses both hardware and software delays and lookup table.
Stimulus:
[]	Select the Debugger Stimulus Controller and then chose New Scenario.
[]	Click the first cell under the column entitled pin. From the pull down menu, select RB0. In the next cell under the title Action, select Toggle. From this window, and from the columns under the title Fire, you can, using simulation, provide logic signals to the various input pins exactly as if they were being given signals from outside circuits. This way you can check how your program behaves. In our current project, when you simulate the program and click on the RB0 Fire button, it will simulate the RB0 digital input pin of the microcontroller being toggled.
Programming the Chip
[]	Copy the Lab6.asm to your directory.
[]	Start the MPLAB software on your PC and build the project.
[]	Select the Configure menu Select device and make sure the following is selected:
· Device is PIC16F877A
[]	Select the Configure menu Configuration Bits and make sure the following are selected:
· Oscillator is XT
· Watchdog Timer, Power Up Timer, Brown Out Detect can all be off/disable for this tutorial
· Low Voltage Program should be disabled.
· Code Protect Data EE, and Code Protect - turn all off
· Flash Memory Write 00000-FFFFFh.

 [] 	Select Programmer Select Your Programmer (PICKit2 or MPLAB ICD2). You should see in the Output window a message regarding the availability of a new operating system for the programmer. Ignore this message. If you get any other error messages, ask for the supervisor’s help.

 [] 	Place the chip in the Zero Insertion Force (ZIF) socket carefully, making sure it is oriented correctly such that pin 1 is on the left upper side of the ZIF. The chip should sit without pushing and very easily. Pull the handle of the ZIF socket to the upright position to hold the chip in place firmly.

 [] 	From the Programmer menu, select Erase Flash Device to make sure that the PIC you are using is blank.

[] 	Select Programmer Program. This will start the programming process of the chip. Watch the bottom of the MPLAB IDE program for progress information.

[] 	If the programming was successful, then you should see a pass message near the MPLAB IDE icons. If there are any problems, contact the supervisor for help.

[] 	Remove the chip from the ZIF socket. It is now ready to be tested on the development board.

Testing the Program on the Development Board

[] 	Insert the chip carefully into the Zero Insertion Force (ZIF) socket noting the correct orientation for pin 1.

[] 	Connect a wire from port RD0 to a, RD1 to b ...and RD6 to g from the seven segment. Insert the wire carefully making sure it does not break inside the terminal pin.

[] Connect a wire from port C pin 0 to the connection point for LED D1 (Conveyer Motor). Insert the wire carefully making sure it does not break inside the terminal pin.

[] Connect a wire from port C pin 1 to the connection point for LED D2 (Filling Motor). Insert the wire carefully making sure it does not break inside the terminal pin.

[] Connect a wire from port C pin 3 to the connection point for LED D3 (Buzzer). Insert the wire carefully making sure it does not break inside the terminal pin.

[] Connect a wire from port C pin 4 to the connection point for Switch 5 (Bottle Sensor). Insert the wire carefully making sure it does not break inside the terminal pin.

[] 	Connect the power supply to the board, then turn the power switch on.

In this section you are required to solve the following about the code:

1- Modify the code so the seven segment display numbers up to nine then the buzzer alarm for 128ms.
2- Add a code to check the Emergency Button if Pressed. Suppose that it’s a (NC) button and connecting to RB0 (You must use Interrupt).
[image:]

PICKit2 Programmer

[image:]
[bookmark: _GoBack]

MPLAB ICD2 Programmer

Discussion and Follow-up:

1. Suppose the oscillator frequency is 3.8684 MHz. What is the longest possible time between Timer0 interrupts? How would TMR0 and OPTION_REG be initialized for this case? What is the shortest possible time between Timer0 interrupts? How would TMR0 and OPTION_REG be initialized for this case?

2. In the PUSH macro, why did we have to use the swapf instruction to save the status register?

3. In the cblock definitions at the beginning of the program, why did we need to reserve four different locations to save the W register? Was it necessary? Why or why not?

4. The comments in the code state that WTemp must be reserved in all banks. Why?

5. In the pop macro, WTemp is restored to W using two swapf instructions. Why are two swapf instructions used instead of the simpler movf instruction?

6. How many instructions does the assembler generate for each “banksel” assembler directive?

7. Look in Chapter 13 of the data sheet. What is the binary value of the instruction
“iorwf PORTB, W”? What does the “W” at the end of the instruction mean? What is the binary value of the instruction “iorwf PORTB, F”? What does the “F” at the end of the instruction mean?

8. If the result of an arithmetic operation is zero, what bit in what register gets set to what value? If the result of an arithmetic operation instruction is 259, what bit in what register gets set to what value?

9. How many instructions affect the zero bit of the STATUS register?

10. What is the maximum clock frequency for a PIC16F876? What is the maximum instruction frequency for a PIC16F876?

11. Look at the program memory window in your Lab01 project. Note that unused program memory at the end of the program is filled with “addlw 0xff” instructions. Why?

12. What does the Master Clear input do when asserted? What pin number on the PIC is the Master Clear input? Is it active high or active low? What voltage should be connected to the Master Clear input under normal operation?

13. Why it is important to save the W and STATUS registers at the beginning of an interrupt, and restore them at the end of the interrupt?
	MED 432 Fall semester 2016/2017
image1.png

image2.tmp

image3.png

