[image: image1.png]
University of Jordan

School of Engineering

Department of Mechatronics Engineering

Microprocessor and Microcontroller Laboratory

0908432
Exp. 4: Implementing Instructions (2)

Objectives
1. To be familiar with assembly language programming and the Microchip PIC 16 series instruction set.
2. To see an application of macros and methods of utilizing them.
3. To use the debugging facility of the MPLAB IDE to fix program bugs.
Pre-lab Preparation:

1. Read chapter 7 of the PIC16F84 data sheet.

2. Review the Status Register- Section 2.2.1 in the book
3. Study the assembly code listings of accompanying programs. (Very important).

Procedure:
This lab experiment is composed of two parts. The first part introduces the theory behind BCD numbers used in this experiment. The second part is an interactive one where you will be introduced to some PIC codes and to investigate their parameters and usage. The experiment involves using MPLAB and implementing codes to learn key issues.

Part 1:
Binary Coded Decimal (BCD) is an encoding scheme for decimal numbers in which each digit is represented by its own binary sequence. Its main advantage is that it allows easy conversion to decimal digits for printing or display and faster decimal calculations. Its drawbacks are the increased complexity of circuits needed to implement mathematical operations and a relatively inefficient encoding (6 wasted patterns per digit).
In BCD, a digit usually represented by four bits which, in general; represent the values 0 - 9. To BCD-encode a decimal number using the common encoding, each decimal digit is stored in a four-bit nibble.

Decimal: 0 1 2 3 4 5 6 7 8 9

BCD: 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

Since most computers store data in eight-bit (byte), there are two common ways of storing four-bit BCD digits in those bytes:

1. Unpacked BCD: where each digit is stored in one byte and the other four bits are then set to all zeros.

2. Packed BCD: where two digits are stored in each byte.

Part 2:
[]
Create a directory on the PC in drive D inside folder lab4 in which to store all of your work. Use YOUR name as the name of the directory.

[]
Copy the Example3.asm file to your created directory from the lab4 directory.

 []
Create a new project with Example3.asm. Build the project.
[]
Select the Debugger (MPLAB SIM(Reset, and then choose the Processor reset menu item or press F6. The software should highlight (with a green arrow) the “nop” instruction at address 0 just preceding the “goto Main” instruction in the code. In this step, you have told the simulator to start behaving as if the microcontroller has just been given power. So, it is now ready to start execution of your program. It is now ready and waiting at the reset vector for your next command. Note the program is not running yet.
[]
Select the View (Hardware Stack menu item. This allows you to view the PIC microcontroller hardware stack, which stores return addresses after each interrupt and function call. Note that the stack is empty since nothing is happening.

[]
Select the View (Watch Window. From the Symbols drop down list, choose BCD1. Click the Add Symbol button. Repeat the same procedure but for BCD2, BCD_Result. You should now note that your new Watch Window has these three register names listed, along with their addresses and contents.
 []
Select the Window (Tile Horizontal menu item. Close the Output window if it is still open. Select Window again (Tile Horizontal. Make sure that the Editor, Hardware Stack and Watch windows are observable clearly.

[]
Select the Debugger (Animate menu item. Observe the code running one instruction at a time, and the stack updating as routines are called. The status bar at the bottom of MPLAB shows the program counter (pc), which contains the address of the instruction that is to be executed next. The status bar also shows the value of the W register, the processor (PIC16F84A), the Status register flag settings, and a couple of other important items.

[]
Select the Debugger (Halt menu item (F5).

You have just seen one aspect of the simulator. Using the animate function you can easily simulate the whole program when it is running and watch how the registers are changing. You can also observe and see whether the program is executing correctly, calling the functions correctly. You can also see if the hardware stack is overflowing or not. So you can generally get an idea if the ideas and logic you have implemented in the software are working correctly as you expect or not.

Exercises:
Important Note: You must use comments to clarify your code. Use equ and include directives to specify the SFRs and GPRs. Utilize Macros, Subroutines and cBlocks in your code.
1. An unpacked 3-digit BCD number is stored in memory starting at the location 0x35 (Least Significant Digit "LSD"). You are required to convert the unpacked 3-digit BCD number into binary format and store the value in location 0x20. Use multiply by the shifting method.

Assume that the number is already in the range (0 – 255).
Hint1: 105 = 1 + 0x10 + 5 *102 and the value stored in 0x20 is 01101001

2. A certain assembly application uses 1 digit packed BCD numbers to represent temperature. Before processing the temperature, it should be checked against the valid range of 25 – 78 Cº. Write a procedure that implements this checking functionality. The procedure should load the memory location Result in location 0x22 with the following:
 Result=00 if the temperature falls in range, Result=FF if the temperature falls out of range

MED 432 Fall semester 2016/2017

1

