[image: image1]
University of Jordan

School of Engineering

Department of Mechatronics Engineering

Microprocessor and Microcontroller Laboratory

0908432

 Exp. 3: Implementing Instructions (1)

[image: image2.wmf]
Objective
To be familiar with assembly language programming and the Microchip PIC 16 series instruction set.

Pre-lab Preparation:
Review Experiment 2 thoroughly.

Read chapter 7 of the PIC16F84 data sheet.

Review the Status Register- Section 2.2.1 in the book
Procedure:
 This lab experiment is composed of two Parts. The first part introduces the theory behind assembly language programming and machine code format. The second part is an interactive one where you will be introduced to some PIC instructions and investigates their syntax, parameters and usage. The experiment involves using MPLAB and implementing codes to learn key issues.

Part 1: (Theory)
Introduction to Assembly Language and the PICMicro ISA (Instruction Set Architecture)

Embedded systems combine both hardware and software aspects. The hardware evolved to a high degree of integration that has been mostly integrated in modern ICs. In addition, programming also evolved from directly writing machine codes to assembly and higher level languages such as C.
Why use assembly while we have the high-level-language “HLL” alternatives?

Assembly once learnt and professionally used offers several advantages over HLL programming in that the professional programmer can use it to write smaller codes in comparison with that produced by HLL code compilers “this is due to compiler inefficiency”. Shorter codes execute fast and therefore beneficial when it comes to real-time application requirements. Moreover, to keep costs low and reduce power consumption, memories integrated into microcontrollers are small in size so it is important for the programmer to write minimal codes in order for his complex programs to fit in.

On the other hand, using HLL reduces code complexity, simplifies code debugging and leads to faster product development which offers shorter time to market. Such aspect is important in today’s competitive market.

Introduction to the PIC 16 series machine code

Each PIC16XXX instruction is a 14-bit word, divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. Here, another classification of the instruction introduces itself according to the instruction format

The PIC16XXX instruction set is divided into:

· Byte-oriented instructions which are so named because they deal with whole registers (byte wide).

· Bit-oriented instructions which affect single bits in registers

· [image: image3.png]Literal instructions which contain literals (constant numbers) within the same instruction

· [image: image4.png]Control instructions which alter the flow of operation of the programs or give direct commands to the PIC.

[image: image5.png]The STATUS Register: The STATUS register holds the bits that are used to carry extra information about the result of the instruction most recently executed, for example whether the result is zero or a carry/borrow operation has occurred.

Part 2: (Practical)
A-Introducing the " MOVF" instruction.
The PICMicro instruction set has several instructions that are used to move data, literals as shown below:

[image: image12.emf]
MOVF

[image: image6.png]This instruction moves the data stored in the register to either the working register or to the register itself. This is the only data movement instruction that affects the STATUS register.
[]
Create a new project and name it Lab3Part2
[]
Write the following code, and save it as Lab3_P2.asm
Location equ 0C

MOVLW 0

MOVWF Location

MOVF Location, 0

END

[]
Build the project

[]
Open the watch window, add the WREG, STATUS registers, and add the symbol Location.

[]
Run and simulate the project. Did the value of Status Register change? If yes, why and what is the affected bit? If not, explain.

[]
What is the equivalent machine code of instruction MOVF TMR0, 0.
EXERCISE
[image: image7.png]Write a code that initiates the memory location 0D with the value 0 and moves its contents to itself. Use the equ directive to give the GPR (General Purpose Register) a name and use it in your program. Watch the STATUS register, did its value change? Explain.
PART2-B
The following code calculates Fibonacci series F(x) = F (4)
 1. #include "p16f84a.inc"

 2. loc1 equ 0x20

; Reserve memory location to store the series in.

 3.
 loc2 equ 0x21

 4. loc3 equ 0x22

 5.
 loc4 equ 0x23

 6.
 loc5 equ 0x24

 7. fibn equ 0x30

 8.

clrf fibn

; calculate the first two terms F(0) and F(1)

 9.

clrf loc1

 10.

clrw

 11.

addlw 0x01

 12.

movwf loc2

 13.

Incf fibn, f

 14.

addwf loc1, w

 15.

movwf loc3

; calculate F(2)

 16.

Incf fibn, f

 17.

movf loc2, w

 18.

addwf loc3,w

 19.

movwf loc4

; calculate F(3)

 20.

Incf fibn, f

 21.

movf loc3, w

 22.

addwf loc4,w

 23.

movwf loc5

; calculate F(4)

 24.

Incf fibn, f

 25.

nop

 26.

end

[]
Create a project and name it LAB3B
[]
Build and simulate the project.

[]
From the View menu choose File Registers, start looking at location 0x20, what do you see?

[]
From the View menu choose Program Memory, Under the Opcode field, what is the machine code representation of the instructions in lines 10,11, 14 and 20? What do the don’t cares assemble into. Verify the opcodes by translating them by hand.
[]
Can you determine the instructions which affect the STATUS register.

Exercise

Modify the code above by adding the next term in the sequence to the series.
PART2 - C
The following code carries out the operation: (15d - High nibble -Low nibble)

#include "p16f84a.inc"

Loc1 equ 0x0c

Loc2 equ 0x0d

movlw 49

; Initialize Loc1

movwf Loc1

swapf Loc1, w

movwf Loc2

bcf Loc1, 7

; Masking

bcf Loc1, 6

bcf Loc1, 5

bcf Loc1, 4

bcf Loc2, 4

bcf Loc2, 5

bcf Loc2, 6

bcf Loc2, 7

movf Loc1, w

;15d - Low nibble

sublw 0x0f

subwf Loc2, f

; intermediate result - High nibble

nop

end

[]
Create a project and name it LAB3B
[]
Build and simulate the project.

[]
From the View menu choose Watch and add WREG, Loc1, Loc2 and STATUS registers

[]
From the View menu choose Program Memory, Under the Opcode field, what is the machine code representation of the instruction bcf Loc1, 5. Verify the opcode by translating it by yourself.
[]
Notice the difference between the sublw and subwf instructions.

Exercise

Modify the code above to carry the following operation: (High Nibble + Low Nibble – 0x0d). What STATUS bits are affected?

Discussion and Follow Up Note (Use the PIC 16F84A in all your projects.)
1. The following two codes accomplish the same operation; however, there is a slight difference in how it is carried out. Figure it out.

#include "p16f84.inc"

#include "p16f84.inc"

MOVLW d'253'

MOVLW d'254'

MOVWF TMR0

MOVWF TMR0

INCF TMR0, W

MOVLW 02

INCF TMR0, F

ADDWF TMR0

INCF TMR0, F

NOP

INCF TMR0, F

END

NOP

END

2. Create a project with the code in Part3 - C, change the values of “Loc1” and “Loc2” to 0x8c and 0x8d respectively.

· Will the code run correctly? Justify your answer.
· What are the values found in the locations 0x0c, 0x0d, 0x8c, and 0x8d?

3. 1. Two memory locations LocA (with address 0x30) and LocB (with address 0x40) are to be initialized with the ASCII values “A” and “B” respectively. You are required to write a code that initializes both memory locations and then interchanges their contents using the swap instruction. Your code should be easy to read and understand. Use comments to clarify your code. Use any directives that you find appropriate
4. The following two codes logically perform the same function; however, the second code gives different results, why?

#include “p16f84a.inc”

#include “p16f84a.inc”

clrf PORTB

clrf STATUS

movlw 45

movlw 45

movwf PORTB

movwf STATUS

swapf PORTB, f

swapf STATUS, f

nop

nop

end

end

5. One student wrote a code which initializes location 0x50 with the decimal value of 125; however, the program did not run correctly, why?

6. Write a simple program that implements the following pseudocode

Initialize location 0x30 (Loc30) with the decimal value of 15

Initialize location 0x40 (Loc40) with the value of 1

Loc30 = Loc30 – Loc40

Loc40 = Loc40 + 1

Repeat until Loc30 = 0

Include a screenshot of your work showing the watch window and displaying the final values of Loc30 and Loc40.

MED 432 Fall semester 2016/2017

[image: image8.wmf][image: image9.png][image: image10.png][image: image11.wmf]