# Measurements and Control Laboratory (0908448) <u>Assignments 1</u>

## **Problem 1:**

For Electrical circuit shown in the figure 1, assume the output is  $V_c(t)$ 

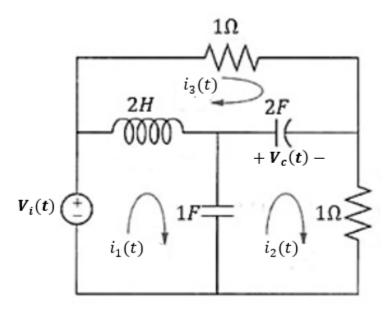



Figure 1: Electrical Circuit

#### Find the following:

- 1) The Mathematical Equations (Differential Equations) of System?
- 2) The Transfer Function between input and output  $\frac{V_c(s)}{V_i(s)}$ ?
- 3) Draw the state diagram (Signal flow Diagram) depend on part1 <u>using Simulink</u> <u>block</u> that used to find the response of output and solve the differential equations?
- 4) Using the SimScape Library, <u>Build the circuit</u> and <u>Plot the Response</u> of the following states, due the input  $V_i(t) = 10 \ u(t)$ , t > 0?
  - a. Output Voltage on capacitor  $V_c(t)$ .
  - b. The Currents in the  $i_1(t)$ ,  $i_2(t)$  and  $i_3(t)$ .
  - c. The Voltage on Inductor.
- 5) What is the reason that create undershoot in the response of the voltage  $V_c(t)$  and the what the name of system in this case?

## **Problem 2:**

The figure 2 shows a simple model of a car suspension. It consists of a spring and damper connected to a body (represented as a mass), which is agitated by a force.

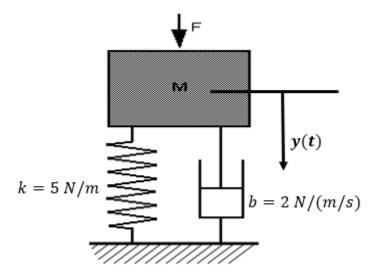



Figure 2: Suspension Model

#### Build the SimScape Model and Find the following:

- 1) Build the SimScape Model for the circuit.
- 2) Find the <u>Position response y(t)</u> due to the step input F(t) = 5u(t).  $t \ge 0$ For <u>Open Loop System</u>,
- 3) Determine the Time specification (Overshoot, settling time, rise time, peak time, and stead state error)
- 4) Study and write comment for the effect of:
  - a) Increase and decrease the value of M, when the value of k and b constant
  - b) Increase and decrease the value of k, when the value of M and b constant
  - c) Increase and decrease the value of  $\boldsymbol{b}$ , when the value of  $\boldsymbol{M}$  and  $\boldsymbol{k}$  constant
- 5) Repeat the part 2 and 3 for the Close Loop System

## **Problem 3:**

A tank level control system is shown in figure 3. It is desired to regulate the level h in response to a disturbance change  $q_3$ . The desired height variation is equal to zero.

The system is describing by the open loop

$$G(s) = \frac{R}{RCs + 1}$$

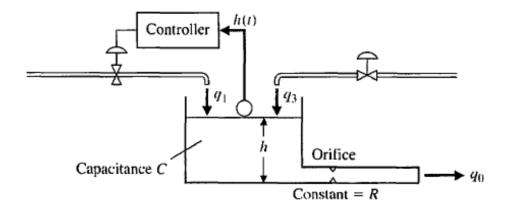



Figure 2: Tank level controller

For this system, Find the following:

1) Identify the system Components

| Parameters        |  |
|-------------------|--|
| Signals in system |  |
| State in system   |  |

- 2) Discuss the objective of controller
- 3) Draw the block diagram that describe the system.