ABET course syllabus (Foundation Engineering)

- *1. Course number and name* 0901331: Foundation Engineering
- Credits and contact hours
 3 Credit Hours
- 3. Instructor's or course coordinator's name Instructor: Wassel AL Bodour, Assistant Professor of Civil Engineering Course Coordinator: Wassel AL Bodour, Assistant Professor of Civil Engineering
- 4. Text book, title, author, and year
 - "Foundation_Analysis_and_Design", Joseph E. Bowles,5th Edition
 - "Principles of Foundation Engineering", Braja M. Das,7th Edition, SI Edition, , 2011, Cengage Learning ,Stamford, CT 06902, USA
 - "Foundation Analysis and Design", JosephE. Bowles, , 5th Edition, 2001, McGraw Hill
 - a. other supplemental materials
 - "Soil Mechanics Principles and Practice", Graham E. Barnes, 3rd Edition, 2010, Palgrave Macmillan
- 5. Specific course information
 - a. brief description of the content of the course (catalog description)
 Subsurface exploration.Bearing capacity of soil and rock.Stresses due foundation loads.Shallow foundation settlement.Factors considered for shallow foundation design. Deep foundations: capacity and settlement. Lateral earth pressure and retaining walls. Foundations on expansive soils. Slope stability
 - *b. prerequisites or co-requisites* Prerequisite: Geotechnical Engineering (0901232)
 - *c. indicate whether a required, elective, or selected elective course in the program* Required for Civil Engineering
- 6. Specific goals for the course
 - a. specific outcomes of instruction, ex. The student will be able to explain the significance of current research about a particular topic.
 - The student will be able to describe the process of subsurface exploration.
 - Student will be able to analyze shallow foundations on clay or sand that satisfy the allowable bearing capacity and settlement requirements based on soil properties
 - Student will be able to analyze single piles and pile groups that satisfy the bearing capacity and settlement requirements;
 - Student will be able to analyze lateral earth pressure
 - Student will be able to design foundations on expansive soils
 - Student will be able to evaluate stability of slopes

- *b.* Explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed by the course.
 Course addresses ABET Student Outcome(s): a, c, and e
- 7. Brief list of topics to be covered
 - Introduction
 - Soil mechanics review
 - Subsurface exploration
 - Bearing capacity of Shallow foundations on soils
 - Spread footing
 - Continuous wall footing
 - o Strip footing
 - Mat foundation
 - Bearing capacity of Foundation on rock
 - Settlement of shallow foundations
 - Theory of Elasticity
 - o Schmertmann method
 - Consolidation and preloading
 - Rock settlement
 - Deep foundations
 - Geotechnical capacity of driven piles
 - Settlement of driven piles
 - o Geotechnical design of driven piles
 - Lateral earth pressure
 - Geostatic earth pressure
 - Active earth pressure
 - Passive earth pressure
 - o Rankine's theory
 - o Coulomb' method
 - Retaining walls
 - Sizing earth retaining walls
 - Foundation on expansive soils
 - Expansive soils definitions and identification
 - Shallow foundations for expansive soils
 - Deep foundations for expansive soils
 - Negative skin friction
 - Slope stability analysis
 - Limit equilibrium concept
 - Moment method
 - $\circ \quad \text{Method of slices: Ordinary /Fellenius method} \\$