In this lab we will

- Analyze the I-V characteristics of the NMOS and PMOS transistors using LTspice.
- Design a transmission gate
- Test the ability of the NMOS and PMOS transistors to transfer voltage.

PART 1: Transistor Analysis

Build the circuit shown in the figure below using PMOS transistor and answer the following questions:

- 1- For W=300n and L=100n find the drain current I_d and the mode of operation when the gate voltage is 0.25 V and the drain voltage is 0.2V.
- 2- Draw the I-V characteristics (V_{ds} vs I_{ds}) for the PMOS transistor for the following gate voltage values (0, 0.25, 0.5 and 0.75)
- 3- Draw the relation between the length of the transistor and the current for the values used on Q1.
- 4- Draw the relation between the temperature and the current for the values used on Q1.
- 5- [Post Lab] Draw the relation between the body voltage and the current for the values used on Q1.

PART 2: Pass transistors and Transmission Gate

- Using pass transistor design an experiment to measure the Vth voltage of an NMOS transistor.
 Hint: Connect the gate of the transistor to Vdd and apply a pulse signal at the drain of the transistor.
- 2- Draw the circuit below to find the voltage at Node A.

PART 3: Transmission Gate (Post Lab)

Design a transmission gate using NMOS and PMOS transistors and then design an experiment to test its ability to transfer strong 0 and string 1.

Digital Electronics Lab (CPE 462) Lab 2 Inverter Design and Analysis

In this lab we will

- Analyze the functionality of the NMOS resistive load inverter .
- Analyze the functionality of the CMOS inverter.
- Design the layout of the CMOS inverter

PART 1: NMOS Resistive Load Inverter (Schematic)

Design an NMOS resistive load inverter with the following parameters: RL=7K, W=128n, L=32n, Capacitance at output = 40fF and answer the following questions:

- 1- What are the values of VOL and VOH of the inverter?
- 2- Change the value of W and show its impact on the Inverter characteristics.

Parameter	V _{OH}	V _{OL}	I _{C(Vin =0)}	I _{C(Vin =1)}
W♠				

3- Calculate the average power of one cycle. Assume the cycle time is 100n with 40% duty cycle

PART 2: CMOS Inverter (Schematic)

Design CMOS inverter with the following parameters: $W_n=64_n$, $L_n=32n$, $W_p=128n$, $L_p=32n$ Capacitance at output = 60fF and answer the following questions:

- 1- What are the values of VOL and VOH of the inverter?
- 2- What is the current of the NMOS and PMOS transistors when $V_{in=0}$ and $V_{in=1}$.
- 3- Calculate the average power of one cycle.

PART 3: CMOS Inverter (Layout)

Design CMOS inverter with the following parameters: $W_n=64_n$, $L_n=32n$, $W_p=128n$, $L_p=32n$ Capacitance at output = 60fF and answer the following questions:

- 1- What are the values of VOL and VOH of the inverter?
- 2- What is the current of the NMOS and PMOS transistors when $V_{in=0}$ and $V_{in=1}$.
- 3- Calculate the average power of one cycle.
- 4- Compare the rise time and the fall time of the Layout and schematic versions of the inverter.

Note: Please watch this video on how to use Electric to design the layout. https://youtu.be/Jqj8VmS38fw

Instructions on Simulating Layout Using LTspice

Layout simulation using LTspice

1- In our class we will not use the **C5_models.txt** file that is used in the tutorial. Instead we will use the **32nm** technology models. You can find the file **Tech_models.txt** on MS teams under the Files tab. In your spice code use Tech_models.txt instead of C5_models.txt.

2-To setup the simulator to use LTspice follow these steps

- 1. In Electric Go to **File->Preferences.**
- 2. In the open window expand the **Tools** directory that appears on the right side of the window
- 3. click on Spice/CDL
- 4. In the **Running Spice** section fill the **Run Program** part with the path to the **XVIIx64.exe** file on your PC. It is the file that we execute when we launch LTspice.. You can find it inside **program files\LYC\LTspiceXVII**
- 5. Fill the **With Args** textbox with the following text **(COPY THE TEXT AS IT IS including the double quotation mark)**

"-i \${FILENAME} -r \${FILENAME_NO_EXT}.raw -o \${FILENAME_NO_EXT}.out"

To avoid any errors use the following spice code to simulate the 2 input NAND gate

vdd VDD 0 DC 1.2 vin **A** 0 PULSE(0 1.2 0 1n 1n 20n 40n 5) vin2 **B** 0 PULSE(0 1.2 0 1n 1n 40n 80n 5) cload **OUT** 0 50fF .tran 0 40n .include C:\\Tech_models.txt (**Fill the right path to the Tech_models.txt file**)

Please let me know if you need any help

Digital Electronics Lab (CPE 462) Lab 3 Combinational Circuit Design

In this lab we will

- Design the schematic for the basic logic gates
- Analyze the performance and power of the schematic of the basic gates
- Design the layout for the basic logic gates
- Analyze the performance and power of the layout of the basic gates
- Note: In all questions assume that load capacitance is 60fF.

PART 1A: NAND gate (Schematic)

Design the schematic of the 3-input NAND gate and answer the following questions

- 1- Test all input combinations for the gate
- 2- Size the transistors such that the worst case rise and the fall time are almost the same.
- 3- Measure the average power of the NAND gate 1ns before the transition and 1ns after the transition of the input signal.

PART 1B: NOR gate (Schematic)

Design the schematic of the 3-input NOR gate and answer the following questions

- 1- Test all input combinations for the gate
- 2- Size the transistors such that the worst case rise and the fall time are almost the same.
- 3- Measure the average power of the NOR gate 1ns before the transition and 1ns after the transition of the input signal.

PART 2A: NAND gate (Layout)

Draw the stick diagram of the 2-input NAND gate and then Design the layout of the gate before answering the following questions

- 1- Test all input combinations for the gate
- 2- Size the transistors such that the worst case rise and the fall time are almost the same.
- 3- Measure the average power of the NAND gate 1ns before the transition and 1ns after the transition of the input signal.

PART 2B: NOR gate (Layout)

Draw the stick diagram of the 2-input NOR gate and then Design the layout of the gate before answering the following questions

- 1- Test all input combinations for the gate
- 2- Size the transistors such that the worst case rise and the fall time are almost the same.
- 3- Measure the average power of the NOR gate 1ns before the transition and 1ns after the transition of the input signal.

PART 3: NOR gate using Transmission gates and inverters (schematic)(Post Lab)

Design 2-input NOR gate using transmission gates and inverters only and answer the following questions:

- 1- Test all input combinations for the gate
- 2- Size the transistors such that the worst case rise and the fall time are almost the same.
- 3- Measure the average power of the NOR gate 1ns before the transition and 1ns after the transition of the input signal.

Note: Please watch this video on how to use Electric to design the layout. https://youtu.be/Jqj8VmS38fw

Digital Electronics Lab (CPE 462) Lab 3 Combinational Circuits Layout

In this lab we will

• Design and Analyze the functionality of the Combinational circuits layout built as complex function and using standard cells.

PART 1: Standard Cell Design (Schematic)

Given the NAND, NOR and Inverter gates layouts build the layout for the following functions.

- 1- Test the functionality of the design using all input combinations
- 2- What is the rise time of the design when the input changes from ABC = 000 to ABC = 101

PART 2: Design the layout for the following expression as a complex function.

- 1- Draw the schematic of the expression
- 2- Draw the stick diagram
- 3- Based on the stick diagram design the layout of the expression.

$$F = \overline{A.B + C}$$

PART 3: NOR gate using Transmission gates and inverters (schematic)(Post Lab)

Design 2-input NOR gate using transmission gates and inverters only and answer the following questions:

- 1- Test all input combinations for the gate
- 2- Size the transistors such that the worst case rise and the fall time are almost the same.
- 3- Measure the average power of the NOR gate 1ns before the transition and 1ns after the transition of the input signal.

Instructions on Simulating Layout Using LTspice

Layout simulation using LTspice

1- In our class we will not use the **C5_models.txt** file that is used in the tutorial. Instead we will use the **32nm** technology models. You can find the file **Tech_models.txt** on MS teams under the Files tab. In your spice code use Tech_models.txt instead of C5_models.txt.

2-To setup the simulator to use LTspice follow these steps

- 1. In Electric Go to **File->Preferences.**
- 2. In the open window expand the **Tools** directory that appears on the right side of the window
- 3. click on Spice/CDL
- 4. In the **Running Spice** section fill the **Run Program** part with the path to the **XVIIx64.exe** file on your PC. It is the file that we execute when we launch LTspice.. You can find it inside **program files\LYC\LTspiceXVII**
- 5. Fill the **With Args** textbox with the following text **(COPY THE TEXT AS IT IS including the double quotation mark)**

"-i \${FILENAME} -r \${FILENAME_NO_EXT}.raw -o \${FILENAME_NO_EXT}.out"

To avoid any errors use the following spice code to simulate the 2 input NAND gate

vdd VDD 0 DC 1.2 vin **A** 0 PULSE(0 1.2 0 1n 1n 20n 40n 5) vin2 **B** 0 PULSE(0 1.2 0 1n 1n 40n 80n 5) cload **OUT** 0 50fF .tran 0 40n .include C:\\Tech_models.txt (**Fill the right path to the Tech_models.txt file**)

Please let me know if you need any help

Digital Electronics Lab (CPE 462) Lab 5 Combinational Circuit Design

In this lab we will

- Design the schematic for the basic logic gates using Pseudo-NMOS, Dynamic and Domino Logic
- Compare the power of the dynamic logic against the CMOS Circuits.
- Note: In all questions assume that load capacitance is 60fF.
- In all experiments measure the power for the

PART 1A: Pseudo-NMOS Inverter (Schematic)

Design the schematic of the inverter using Pseudo-NMOS transistor

- 1- What is the relation between the width of the PMOS transistor and Logic 0
- **2-** What is the power for one cycle?

PART 1B: Dynamic Inverter gate (Schematic)

Design the schematic of the CMOS Inverter and the Dynamic Inverter and answer the following questions:

- 1- Test the functionality of the inverter
- 2- Create a symbol for each inverter
- 3- Measure the FO4 delay of the inverter
- 4- Measure the power of the FO4 inverter (inverter driving 4 similar inverters)

PART 2A: NAND gate (Schematic) (Post Lab)

Design the schematic of the CMOS 2-Input NAND and the Dynamic 2-Input NAND and answer the following questions:

- 1- Test the functionality of the NAND
- 2- Create a symbol for each NAND
- 3- Measure the FO4 delay of the NAND
- 4- Measure the power of the FO4 NAND

Digital Electronics Lab (CPE 462) Lab 6 Sequential Circuit Design (Part 1)

In this lab we will

- Design the schematic for the Clocked SR latch and analyze its functionality
- Design the layout for the Clocked SR latch and analyze its functionality
- Design the schematic for the Master-Slave D Flip Flop and analyze its functionality

PART 1: Clocked SR latch (Schematic)

Design the schematic for Clocked SR latch and verify its functionality

- 1- Measure the D-to-Q delay propagation delay of the latch
- 2- Measure the Clk-to-Q delay of the latch

PART 2: Clocked SR latch (Layout) (Post lab)

Design the layout for Clocked SR latch and verify its functionality

- 1- Measure the D-to-Q delay propagation delay of the latch
- 2- Measure the Clk-to-Q delay of the latch

Digital Electronics Lab (CPE 462) Lab 6 Sequential Circuit Design (Flip flops)

In this lab we will

- Design the schematic for the Master-Slave D Flip Flop and analyze its functionality
- Design the schematic for the Master-Slave D Flip Flop and analyze its functionality

PART 1: D-Master-Slave FF (Schematic)

Design the schematic for the D-Master-Slave FF and verify its functionality:

- 1- Measure the D-to-Q delay propagation delay of the FF
- 2- Measure the Clk-to-Q delay of the FF
- 3- Measure the setup time for the FF
- 4- Measure the hold time of the FF

PART 2: D-Master-Slave FF (layout)(Post lab)

Design the layout for the D-Master-Slave FF and verify its functionality:

- 1- Measure the D-to-Q delay propagation delay of the FF
- 2- Measure the Clk-to-Q delay of the FF
- 3- Measure the setup time for the FF
- 4- Measure the hold time of the FF

Digital Electronics Lab (CPE 462) Lab 8 Memory Cells (6T SRAM Cell)

In this lab we will

- Design the schematic for the SRAM cell and test its functionality.
- Design the layout for the SRAM cell and test its functionality.

For more details about the SRAM operation please watch the video that I uploaded on the class page on MS teams.

Also it is recommended to watch this YouTube to get better idea about the design and testing <u>https://www.youtube.com/watch?v=lPnQVrzgC-M&ab_channel=SanjayVidhyadharan</u>

PART 1: 6T SRAM Cell (Schematic)

- Design the schematic for 6T SRAM Cell
- Design the schematic for the sense amplifier
- Test the read operation
- Test the write operation

PART 1: 6T SRAM Cell (Layout)

- Design the schematic for 6T SRAM Cell
- Design the schematic for the sense amplifier
- Test the read operation
- Test the write operation