
 1

University of Jordan
Computer Engineering Department

CPE439: Computer Design Lab

Experiment 1: Introduction to Verilogger Pro

Objective:
 The objective of this experiment is to introduce the student to the environment of the Verilog

simulator, and write simple programs.

The VeriLogger Pro Environment:
 When you start the VeriLogger Pro program, you will notice that there are four windows.

The upper left is the project window; in this window you select the HDL source files to be

simulated. The upper right window enables the programmer to add a free parameter. The lower left

window is the place where you will see the timing diagram that shows the waveforms of the

signals monitored throughout the simulation. The lower right window is the place where the

contents of the log file can be seen, and the errors of compilation are displayed.

How to write a program that describes the operation of AND and NAND gates?

Perform the following steps:

1. Open a new project file by selecting “New HDL Project” from the Project menu. Name the

project “AND_project.hpj”. The name is given when you select “Save HDL Project As…”

from the Project menu.

2. Open a new source file by selecting “New HDL File” from the Editor menu. A new

window should appear in which you should copy the following Verilog code.
 // This module describes 2-input NAND gate behaviorally
module NAND (out, in1, in2);

input in1, in2;

output out;

assign #2 out = ~ (in1 & in2);

endmodule

3. Save this new HDL file as “NAND.v” by selecting “Save HDL File As…” from the Editor

menu.

4. Add NAND.v to your HDL project by selecting the project window, right click in the

workspace of this window, and select “Add HDL File(s)…”.

5. Similar to Steps 2 through 4, add to your project a new file named AND.v that contains

following code.
 // This module describes 2-input AND gate structurally

module AND (out, in1, in2);

input in1, in2;

output out;

wire w1;

NAND N1 (w1, in1, in2);

NAND N2 (out, w1, w1);

endmodule

 2

6. Now you need to test your AND and NAND modules and verify that they operate properly.

Similar to Steps 2 through 4, add to your project a new file named test.v that contains

following code.

module test;

reg in1,in2; //declaring in1 and in2 as registers for inputs

wire andout; //declaring andout as wire for output

AND n1(andout,in1,in2); //Creating an instance of the module AND

initial begin: stop_at //This initial statement selects

 #100; $finish; //an appropriate simulation period

end //We choose it here to be 250 time units

initial begin :init

 in1=0;

 in2=0; //Initially set in1 and in2 to zero

/* The $display statement prints the sentence between quatations in the

log file. It Operates in the same way the printf function does in the C

language.*/

 $display("*** Table of changes ***");

 $display("Time in1 in2 andout");

/* The monitor statement prints the values of the different parameters

whenever a change in the value of one of them or more occurs.*/

 $monitor("%0d %b %b %b",$time,in1,in2,andout);

end

 /* We use this always construct to continuously vary the values of

the input registers in1 and in2, in order to have a simulation whose

output continuously changes.*

always #10 in1 = ~in1;

always #20 in2 = ~in2;

endmodule

7. After you have added the required files start the program simulation by clicking on the

green arrow in the center of the Tool bar. The results should appear in the log file and the

waveforms should appear in the timing diagram.

 1

University of Jordan

Computer Engineering Department

CPE439: Computer Design Lab

Experiment 2: 32-Bit ALU

Description

In this experiment, students have to design and test a 32-bit ALU with the block diagram

shown in Figure 1 and the operations listed in Table I. The design should be done using

Verilog structural programming by utilizing the modules available in the library Library439.v

that is available online. It is advised that you follow the modular approach in your design, in

which you start by designing small modules from which you build the larger modules.

m (operation) Function

000 Or

001 And

010 Xor

011 Add

100 Nor

101 Nand

110 Slt (Set on less than)

111 Subtract

Figure 1. 32-bit ALU block diagram Table I. Arithmetic and logic operations

supported by the ALU

Procedure

1) Using modular design, you may start the design of the 32-bit ALU by considering the

implementation of a 1-bit ALU shown in Figure 2. In order to build this circuit, most

of the primitive and basic gates are available in the library Library439.v. However,

you have to design the 1-bit full adder and the 8-to-1 multiplexer according the

following specifications. Keep in your mind that your Verilog modules for these units

should be structural.

a) (Prelab.)1-bit FA

The block diagram and truth table for the full adder are shown in Figure 3.

You should write a Verilog structural module to implement this logic circuit

using the following template.

module FullAdder(Cout, sum, a, b, Cin);

 output sum, Cout;

 input Cin, a, b;

 // implementation details are left to the student

endmodule

32

32

32

m (operation)

result

A

B

ALU

3

 2

Figure 2. 1-bit ALU.

a b Cin Cout Sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Figure 3. 1-bit FA block diagram and truth table.

b) (Prelab.) 8-to-1 Multiplexor

You should write a Verliog module that implements this multiplexor using structural

modeling. Your module should use the following template.

module Mux_8_to_1(result, s, in);

 output result;

 input [2:0] s;

 input [7:0] in;

 // implementation details are left to the student…

endmodule

2) Once you have built the full adder and the multiplexor, you can now move to the next

level by writing the Verilog module that implements the 1-bit ALU using the

following template.
module ALU_1(result, sum, Cout, Cin, a, b, less, m);

 output result, sum, Cout;

 input Cin, a, b, less;

 input [2:0] m;

 // implementation details are left to the student…

endmodule

1-bit Full
Adder

a

b

Cin

Cout

sum

 3

3) After you have designed the 1-bit ALU, you may choose to use 32 copies of this

module to build the large 32-bit ALU. However, such approach is time consuming

and requires a lot of effort in wiring-up these instances. Instead, consider building the

32-bit ALU using 8-bit ALUs. In this case you need to wire only 4 instances. So,

consider writing a Verilog module for an 8-bit ALU using the 1-bit ALU designed in

the previous step. Use the following template.

module ALU_8(result, sum, Cout, Cin, a, b, less, m);

 output [7:0]result, sum;

 output Cout;

 input Cin;

 input [7:0]a, b, less;

 input [2:0] m;

 // implementation details are left to the student…

endmodule

4) Once you have built the 8-bit ALU, it is time to construct the 32-bit ALU. Use the

following template for this purpose.
module ALU_32(result, a, b, m);

 output [31:0]result;

 input [31:0]a, b;

 input [2:0] m;

// implementation details are left to the student…

endmodule

Testing

Write a Verilog module to test your 32-bit ALU. The module should use the data given in

Table II as a benchmark. Generate the timing diagram and estimate the maximum delay in

your design.
a b m

00000102h 00000c0fh 000

00000102h 00000c0fh 001

00000102h 00000c0fh 010

00000102h 00000c0fh 100

00000102h 00000c0fh 101

00000102h 00000c0fh 110

000f0001h 00000024h 110

000f0001h 00000024h 011

000f0001h 00000024h 111

University of Jordan

Computer Engineering Department

CPE439: Computer Design Lab

Experiment 3: Register File

 Description

In this experiment, students have to design and test a register file with 32 32-bit registers to be

used in the design of the MIPS like processor by the end of the semester. The register file to be

designed is shown in Figure 1. It consists of 32 32-bit negative edge- triggered registers, one write

port, and two read ports. The write port requires a decoding circuit in order to determine which register

is enabled to receive the data available on the WriteData input based on the 5-bit address supplied on

WriteReg port. This is done through the 5-to-32 decoder.

For the read ports, they are essentially built using 32-bit wide 32-to-1 multiplexors. The 5-bit read

address ports, ReadReg1 and ReadReg2, are connected to the selection lines of the multiplexors to

select the contents of the addressed registers.

Figure 1. Layout of the register file.

 Procedure

The required register file is to be built using Verilog structural programming, unless otherwise stated,

by utilizing the modules available in the library Library439.v that is available online. This has to be

done in a modular fashion. We suggest that you follow the following steps in your design.

1) (Prelab.) 32-Bit Register

Instead of combining 32 negative edge-triggered flip-flops to build this unit, you may consider

using 4 instances of the 8-bit register module REG8negclk that is available in the library. Your

module should use the following template.
module REG32negclk (Q, D, clk, reset, enable);

 input clk, reset, enable;

 input [31:0] D;

 output [31:0] Q;

 // implementation details are left to the student…

endmodule

2) (Prelab.) 32-Bit Multiplexor

Due to the complexity of designing and wiring-up a multiplexor of this size, we suggest

building it using Verilog behavioral modeling. Your module should use the following template.
module Mux_32_to_1_32bit(out, s, in);

 input [1023:0] in;

 input [4:0]s;

 output [31:0]out;

 reg [31:0]out;

 always @(in or s)

 #6 case (s)

 5'd0 : out = in[31:0];

 5'd1 : out = in[63:32];

 // The student should complete all cases

 5'd30 : out = in[991:960];

 5'd31 : out = in[1023:992];

 endcase

endmodule

3) 5-to-32 Decoder

Building a decoder with this size could be cumbersome. Instead, consider building small

decoders and then cascading them to obtain the 5-to32 decoder as follows:

a) 2-to-4 Decoder
You should write a Verliog module that implements this decoder using structural modeling.

Your module should use the following template.
 module Decoder2to4 (out, in, enable);

 input enable; //active high enable

 input [1:0]in;

 output [3:0]out;

 // implementation details are left to the student……

 endmodule

b) 3-to-8 Decoder with enable

You should write a Verliog module that implements this decoder using structural modeling.

Your module should use the following template.
 module Decoder3to8 (out, in, enable);

 input enable; //active high enable

 input [2:0]in;

 output [7:0]out;

 // implementation details are left to the student……

 endmodule

c) 5-to-32 Decoder

You should write a Verliog module that implements this decoder using one instance of

Decoder2to4 module and four instances of Decoder3to8 module only.

Your module should use the following template.
 module Decoder5to32 (out, in, enable);

 input enable; //active high enable

 input [4:0]in;

 output [31:0]out;

 // implementation details are left to the student…

 endmodule

4) The Register File

Once the previous modules have been implemented, it is time now to combine them into one

block that implements the register file. Use the following template for this purpose.
 module RegFile(readdata1 ,readdata2, readreg1, readreg2,

writedata, writereg, regwrite, clk, reset);

 input regwrite, clk, reset;

 input [4:0]readreg1, readreg2, writereg;

 input [31:0]writedata;

 output [31:0]readdata1, readdata2;

 // implementation details are left to the student……

 endmodule

 Testing

Write a Verilog module to test your register file module. The test module should use the data given in

Table I as a benchmark. Generate the timing diagram and estimate the maximum delay in your

design.

Table I. Data to be used in design testing and verification.

Cycle # Clock writedata writereg regwrite readreg1 readreg2 reset
1 1 to 0 to 1 000000ffh 00011b 0 00000b 00011b 1

2 1 to 0 to 1 00000150h 00011b 1 00011b 00100b 0

3 1 to 0 to 1 00000066h 00100b 1 00011b 00100b 0

4 1 to 0 to 1 00000008h 00011b 0 00011b 01000b 0

5 1 to 0 to 1 00000040h 01000b 0 00001b 00101b 0

The waveform for the clock signal should similar to the following one:

 1

University of Jordan

Computer Engineering Department

CPE439: Computer Design Lab

Experiment 4: Instruction and Data Memories

 Description

In this experiment, students have to design and test the instruction memory in addition to the data

memory in order to use them in the design of the MIPS like processor by the end of the semester. The

block diagrams and specifications for these units are shown Figure 1.

Figure 1. The Block Diagram for Instruction and Data Memories.

 Procedure

The required memories are to be built using Verilog behavioral programming.

1) Instruction Memory

We just read from the instruction memory and we don’t write it, and we read an instruction every

cycle so we don’t need an explicit read signal. Write a Verilog module to implement this memory

and initialize it as given in the following module. You don’t have to add further statements. Pay

attention that the memory is 32 bit wide, i.e. it is word-addressed, while the PC which contains

the byte address. So, the contents of the program counter should be divided by 4.

module Instruction_Memory(PC, instruction);

 input [31:0] PC;

 output [31:0] instruction;

 reg [31:0] instruction;

 reg [31:0] IM [255:0];

 initial begin

 IM[0] = 32'h00000010;

 IM[1] = 32'h00000020;

IM[2] = 32'h00000030;

IM[3] = 32'h00000040;

IM[4] = 32'h00000050;

end

//MIPS instruction is 4 Byte, Processor counts bytes not words

 always @ (PC)

 #15 instruction = IM[PC>>2]; //To get the correct

 //address, we divide by 4

 endmodule

 2

2) Data Memory

We write and read from the data memory, and we neither read nor write every cycle so we need

explicit read and write signals. Note that this data memory is also 32-bit wide, thus it is word-

addressed. However, the memory address formed in LW and SW instructions is the byte address.

The data memory should be initialized such that each location has a number greater than the

previous location by 1. For example, word 0 is initialized to 0x00000000, word 1 is 0x00000001,

word 2 is 0x00000002 and so on. Use for loop to do this initialization. Based on this

description, use the following template to implement this memory.

module Data_Memory(readdata, address, writedata, memwrite,

 memread, clk);

 input [31:0] address , writedata ;

 input memwrite , memread , clk;

 output [31:0] readdata;

 // implementation details are left to the student……

 endmodule

 Testing

Write the Verilog modules to test your instruction and data memory modules. The test module for the

instruction memory should use the data given in Table I as a benchmark, and the test module for the data

memory should use the data given in Table II as a benchmark.

Table I. Test data for Instruction Memory

PC
00000000h

00000004h

00000008h

0000000Ch

00000010h

00000014h

Table II. Test data for Data Memory

Cycle # Clock writedata address memread memwrite
1 1 to 0 to 1 00000000h 00000014h 0 0

2 1 to 0 to 1 000000e5h 00000014h 1 0

3 1 to 0 to 1 00000f14h 00000014h 0 1

4 1 to 0 to 1 0000000ah 00000018h 0 1

5 1 to 0 to 1 0000009eh 00000014h 1 0

6 1 to 0 to 1 0000007fh 00000018h 1 0

 1

University of Jordan

Computer Engineering Department

CPE439: Computer Design Lab

Experiment 5: The Control Unit

 Description

In this experiment, students have to design and test the control unit to use it in the design

of the MIPS like processor. The control unit is responsible for generating all the signals

required to control different elements of the processor datapath that will be designed in the

next experiment. The values of control signals are determined based on the opcode and

function fields of the MIPS instructions. The block diagram and specifications for this unit is

shown in Figure 1.

Control Unit

opcode
6

function
6

regdst

memtoreg

regwrite

memread

memwrite

aluop

branch

jump

pcsrc

3

2

2

alusrc

Figure 1. The Block Diagram for the Control Unit.

 Procedure

In order to build this control unit you need to find the equations for the output signals

which are shown on Table 1, then build these equations using structural modeling. Don’t

attempt to use logic minimization as the hardware has 12 inputs. Instead, try finding a logic

expression for each signal by inspecting the truth table.

For example, the aluop[0] signal equals to 1 in one of the following cases:

1) The left most two bits of the opcode are zero and the right most bit of the function

field is 1. (R-type instructions)

2) Bit 4 of the opcode is 1 and the right most bit is 1. (Immediate instructions)

3) The left most two bits of the opcode are 01. (Memory instructions)

This makes the logic expression for this signal as follows

𝒂𝒍𝒖𝒐𝒑 𝟎 = 𝒐𝒑𝟓.𝒐𝒑𝟒.𝒇𝒖𝒏𝒄𝟎+ 𝒐𝒑𝟓.𝒐𝒑𝟒.𝒐𝒑𝟎+ 𝒐𝒑𝟓.𝒐𝒑𝟒

You can follow the same approach in deriving the expressions for the remaining signals. Note

that the assignment of the opcode and function fields for the instructions in Table 1 is tailored

to simplify your design and they are not the same as those available in the MIPS instructions

datasheet.

 2

Your module should use the following template.
module ControlUnit(aluop, alusrc, regdst, memtoreg, regwrite,

 memread, memwrite, branch, jump, pcsrc,

 opcode, func);

 input [5:0] opcode, func;

 output [2:0]aluop;

 output [1:0]regdst, memtoreg;

 output alusrc, regwrite, memread, memwrite, branch, jump,

 pcsrc;

 // implementation details are left to the student……

endmodule

in
st

ru
ct

io
n

o
p

co
d

e

fu
n

ct
io

n

a
lu

o
p

[2
]

a
lu

o
p

[1
]

a
lu

o
p

[0
]

a
lu

sr
c

re
g

d
st

[1
]

re
g

d
st

[0
]

m
em

to
re

g
[1

]

m
em

to
re

g
[0

]

re
g

w
ri

te

m
em

re
a

d

m
em

w
ri

te

b
ra

n
ch

ju
m

p

p
cs

rc

OR 000000 000000 0 0 0 0 0 1 0 0 1 0 0 0 0 0

AND 000000 000001 0 0 1 0 0 1 0 0 1 0 0 0 0 0

XOR 000000 000010 0 1 0 0 0 1 0 0 1 0 0 0 0 0

ADD 000000 000011 0 1 1 0 0 1 0 0 1 0 0 0 0 0

NOR 000000 000100 1 0 0 0 0 1 0 0 1 0 0 0 0 0

NAND 000000 000101 1 0 1 0 0 1 0 0 1 0 0 0 0 0

SLT 000000 000110 1 1 0 0 0 1 0 0 1 0 0 0 0 0

SUB 000000 000111 1 1 1 0 0 1 0 0 1 0 0 0 0 0

JR 000000 001000 x x x x x x x x 0 0 0 0 0 1

ORI 010000 - 0 0 0 1 0 0 0 0 1 0 0 0 0 0

ANDI 010001 - 0 0 1 1 0 0 0 0 1 0 0 0 0 0

XORI 010010 - 0 1 0 1 0 0 0 0 1 0 0 0 0 0

ADDI 010011 - 0 1 1 1 0 0 0 0 1 0 0 0 0 0

NORI 010100 - 1 0 0 1 0 0 0 0 1 0 0 0 0 0

NANDI 010101 - 1 0 1 1 0 0 0 0 1 0 0 0 0 0

SLTI 010110 - 1 1 0 1 0 0 0 0 1 0 0 0 0 0

SUBI 010111 - 1 1 1 1 0 0 0 0 1 0 0 0 0 0

LW 100011 - 0 1 1 1 0 0 0 1 1 1 0 0 0 0

SW 101011 - 0 1 1 1 x x x x 0 0 1 0 0 0

BEQ 110000 - x x x x x x x x 0 0 0 1 0 0

J 110001 - x x x x x x x x 0 0 0 0 1 1

JAL 110011 - x x x x 1 0 1 0 1 0 0 0 1 1

Table 1. Truth Table for the Control Unit

 3

 Testing

Write the Verilog modules to test your control unit module. The test module should use the

data given in Table 2 as a benchmark. Generate the timing diagram for the control signals.

Estimate the maximum delay in your design.

Table 2. Test data for the Control Unit

opcode func

000000b 000000 b

000000 b 000001 b

000000 b 000010 b

000000 b 000011 b

000000 b 000100 b

000000 b 000101 b

000000 b 000110 b

000000 b 000111 b

000000 b 001000 b

010000 b 001000 b

010001 b 001000 b

010010 b 001000 b

010011 b 001000 b

010100 b 001000 b

010101 b 001000 b

010110 b 001000 b

010111 b 001000 b

100011 b 001000 b

101011 b 001000 b

110000 b 001000 b

110001 b 001000 b

110011 b 001000 b

 1

University of Jordan

Computer Engineering Department

CPE439: Computer Design Lab

Experiment 6: Single Cycle Implementation

Description

In this experiment, students have to construct a Verilog module for a single cycle

implementation of the MIPS like processor that they have been working on since the beginning

of the semester. This module should include the five modules that they have constructed in the

previous experiments, namely: ALU, RegFile, Instruction_Memory, Data_Memory, and

ControlUnit modules. Additionally, few small modules that required to support specific

instructions are to be designed and implemented.

Procedure
The single cycle implementation to be designed is shown in Figure 1. In order to build this

implementation, you need to design the following components and then connect them with the

modules constructed in previous experiments. To simplify the design, these new modules are to

be implemented using behavioral modeling.

 Secondary modules

1) 32-bit Adder
Your module should use the following template. (The delay = 50 ns)
module Adder32bit (out, a, b);

 input [31:0]a, b;

 output [31:0]out;

 // implementation details are left to the student…

endmodule

2) Sign Extend Unit
Your module should use the following template.
module SignExtend (out, in);

input [15:0]in;

output [31:0]out;

 // implementation details are left to the student…

endmodule

3) Comparator
Your module should use the following template. (The delay = 10 ns)
module Comparator32bit (equal, a, b);

input [31:0]a, b;

output equal;

 // implementation details are left to the student…

endmodule

 2

4) 26-Bit Shift Left by 2 Unit
Your module should use the following template.
module ShiftLeft26_by2(out, in);

input [25:0]in;

output [27:0]out;

// implementation details are left to the student…

endmodule

5) 32-Bit Shift Left by 2 Unit
Your module should use the following template.
module ShiftLeft32_by2(out, in);

input [31:0]in;

output [31:0]out;

// implementation details are left to the student…

endmodule

6) (Prelab.) 5 Bit 3-to-1 Multiplexor
Your module should use the following template. (The delay = 6 ns)
module Mux_3_to_1_5bit(out, s, i2, i1, i0);

input [4:0] i2, i1, i0;

 input [1:0]s;

 output [4:0]out;

 // implementation details are left to the student…

endmodule

7) (Prelab.) 32 Bit 3-to-1 Multiplexor
Your module should use the following template. (The delay = 6 ns)
module Mux_3_to_1_32bit(out, s, i2, i1, i0);

 input [31:0] i2, i1, i0;

 input [1:0]s;

 output [31:0]out;

 // implementation details are left to the student…

endmodule

8) (Prelab.) 32 Bit 2-to-1 Multiplexor
Your module should use the following template. (The delay = 6 ns)
module Mux_2_to_1_32bit(out, s, i1, i0);

 input [31:0] i1, i0;

 input s;

 output [31:0]out;

 // implementation details are left to the student…

endmodule

9) The Program Counter
The program counter is a 32 bit register so we can use REG32negclk module which we

have built in register file experiment.

 3

 The Processor Module

Once you have implemented the previous modules, you can proceed and connect them to the

modules you have built in earlier experiments. Your module should use the following template.

module Processor(clk, reset, enable);

input clk, reset, enable;

//REG32negclk ProgramCounter(Q, D, clk, reset, enable);

//Instruction_Memory(PC, instruction);

//Adder32bit (out, a, b); for PC + 4

//Mux_3_to_1_5bit(out, s, i2, i1, i0);

//ControlUnit(aluop, ……, jump, pcsrc, opcode, func);

//ShiftLeft26_by2(out, in);

//SignExtend (out, in);

//RegFile(readdata1 ,readdata2, ………, clk, reset);

//Mux_2_to_1_32bit(out, s, i1, i0); for the input b of the ALU

//ALU_32(result, a, b, m);

//ShiftLeft32_by2(out, in);

//Adder32bit (out, a, b); to calculate branch target Address

//Comparator32bit (equal, a, b);

//AND (out, in1, in2);

//Mux_2_to_1_32bit(out, s, i1, i0); branch address or PC + 4

//Mux_2_to_1_32bit(out, s, i1, i0); jump address or jr

//Mux_2_to_1_32bit(out, s, i1, i0); select the final address

//Data_Memory(readdata , address, ……., clk);

//Mux_3_to_1_32bit(out, s, i2, i1, i0);

endmodule

Testing

 (Prelab.) It is required to test your design for the entire processor by filling the instruction

memory module by the instructions sequence shown in the following table. You need to

determine the machine code for these instructions based on Table 1 of the previous

experiment.

Table 1. The Content of the Instruction Memory

Address Instruction Machine Code

00 LW R1, 4(R0) 8C010004h

01 LW R12, 12(R0)

02 LW R3, 20(R0)

03 LW R4, 28(R0)

04 NAND R5, R1, R3

05 NORI R6, R5, 1023

06 SUB R8, R4, R12

07 JAL 11

08 XOR R7, R5, R6

09 SW R7, 8(R0)

10 J 14

11 ANDI R9, R8, 2047

12 BEQ R3, R6, 1

13 JR R31

14 OR R10, R7, R9

15 SLT R11, R8, R1

 4

Table 2. The Test Data for the Processor

 (Prelab.) Next, write a Verilog test module to test your processor module, your test

module should run for 17 cycles.

Cycle # clk enable reset
1 1 to 0 to 1 1 1

2 1 to 0 to 1 1 0

3 1 to 0 to 1 1 0

4 1 to 0 to 1 1 0

5 1 to 0 to 1 1 0

6 1 to 0 to 1 1 0

7 1 to 0 to 1 1 0

8 1 to 0 to 1 1 0

9 1 to 0 to 1 1 0

10 1 to 0 to 1 1 0

11 1 to 0 to 1 1 0

12 1 to 0 to 1 1 0

13 1 to 0 to 1 1 0

14 1 to 0 to 1 1 0

15 1 to 0 to 1 1 0

16 1 to 0 to 1 1 0

17 1 to 0 to 1 1 0

The waveform for the clock signal should similar to the following one:

Your timing diagram should contain the following signals:

a) Clock, reset, and enable.

b) PC (The output of the program counter).

c) Instruction (The output of the instruction memory).

d) The writedata, readreg1, readreg2, and writereg for the register file.

e) The output for the registers R1, R3, R5, R6, R8, R9.

f) The input and the output of the ALU (a, b, m, result).

g) The output of the data memory.

 5

m
em

w
rite

m
em

rea
d

P
C

reg
w

rite

C
o
n

tro
l

U
n

it

2
6

01

01

210

In
str [3

1
:2

6
]

In
str [5

:0
]

012

In
str [1

5
:1

1
]

4
ju

m
p

b
ra

n
ch

a
lu

src

m
em

to
reg

In
str[2

5
:0

]

In
str [1

5
:0

]

2
8

3
2

10

reg
d

st

10

p
csrc

P
C

+
4

 [3
1

:2
8

]

4

In
str [2

5
:2

1
]

In
str [2

0
:1

6
]

2

2

3
1

In
stru

ctio
n

M
em

o
ry

In
str

[3
1

:0
]

W
riteR

eg

W
riteD

a
ta

R
ea

d
R

eg
1

R
ea

d
R

eg
2

R
ea

d

D
a
ta

1

R
ea

d

D
a
ta

2

S
ig

n

E
x
ten

d

D
a
ta

M
em

o
ry

A
d

d
ress

R
ea

d

D
a
ta

W
riteD

a
ta

+

+
S

h
ift

L
eft 2

=
A

L
U

S
h

ift

L
eft 2

a
lu

o
p

3

eq
u

a
l

1
6

3
2

3
2

3
2

Figure 1. The Datapath for MIPS Like Processor.

 1

University of Jordan

Computer Engineering Department

CPE439: Computer Design Lab

Experiment 7: Pipelined Implementation

Description

In this experiment, students have to construct a Verilog module for a pipelined

implementation of the MIPS like processor. This module should include all modules that they

have been used in the implementation of the single cycle processor in addition to few small

modules that required to the pipelined processor.

Procedure
The pipelined implementation to be designed is shown in Figure 1. In order to build this

implementation, you need to design the following components structurally and then add them

to the processor module which we built in the previous experiment.

 Secondary modules

1) (Prelab.) The Program Counter

We need to modify the program counter to make it a 32 bit register with positive edge

trigger to enable us to make the pipelining, so you may consider using 4 instances of

the 8-bit register module REG8 that is available in the library Library439.v. Your

module should use the following template.
module ProgramCounter (Q, D, clk, reset, enable);

 input clk, reset, enable;

 input [31:0] D;

 output [31:0] Q;

 // implementation details are left to the student

endmodule

2) IF_ID Register

We need to build the pipeline register between fetch and decode stages this register is

a 64-bit register with positive edge trigger. Your module should use the following

template.

module IFID (Q, D, clk, reset, enable);

 input clk, reset, enable;

 input [63:0] D;

 output [63:0] Q;

 // implementation details are left to the student

endmodule

 2

3) ID_EX Register

We need to build the pipeline register between decode and execute stages this register

is a 154-bit register with positive edge trigger. Your module should use the following

template.

module IDEX (Q, D, clk, reset, enable);

 input clk, reset, enable;

 input [153:0] D;

 output [153:0] Q;

 // implementation details are left to the student

endmodule

4) EX_MEM Register

We need to build the pipeline register between execute and memory stages this

register is a 106-bit register with positive edge trigger. Your module should use the

following template.

module EXMEM (Q, D, clk, reset, enable);

 input clk, reset, enable;

 input [105:0] D;

 output [105:0] Q;

 // implementation details are left to the student

endmodule

5) MEM_WB Register

We need to build the pipeline register between execute and memory stages this

register is a 104-bit register with positive edge trigger. Your module should use the

following template.

module MEMWB (Q, D, clk, reset, enable);

 input clk, reset, enable;

 input [103:0] D;

 output [103:0] Q;

 // implementation details are left to the student

endmodule

 The Processor Module
Once you have implemented the previous modules, you can proceed and connect them to

the modules you have built in earlier experiments. Your module should use the following

template.

module PipelinedProcessor(clk, reset, enable);

input clk, reset, enable;

// implementation details are left to the student

endmodule

 3

Testing

 (Prelab.) It is required to test your design for the entire processor by filling the

instruction memory by the instruction sequence shown in the following table. You need to

determine the machine code for these instructions based on Table 1 in Experiment 5.

Table 1. The Content of the Instruction Memory

Address Instruction Machine Code

00 LW R1, 4(R0) 8C010004h

01 LW R2, 12(R0)

02 LW R3, 20(R0)

03 LW R4, 28(R0)

04 NAND R5, R1, R2

05 NORI R6, R3, 1023

06 SUB R7, R4, R2

07 XOR R8, R5, R4

08 ANDI R9, R6, 2047

09 SW R6, 8(R0)

10 LW R10, 8(R0)

11 OR R11, R7, R8

12 SLT R12, R1, R4

 (Prelab.) Next, write a Verilog test module to test your processor module, your test

module should run for 18 cycles.

Table 2. The Test Data for the Processor

Cycle # clk enable reset
1 1 to 0 to 1 1 1

2 1 to 0 to 1 1 0

3 1 to 0 to 1 1 0

4 1 to 0 to 1 1 0

5 1 to 0 to 1 1 0

6 1 to 0 to 1 1 0

7 1 to 0 to 1 1 0

8 1 to 0 to 1 1 0

9 1 to 0 to 1 1 0

10 1 to 0 to 1 1 0

11 1 to 0 to 1 1 0

12 1 to 0 to 1 1 0

13 1 to 0 to 1 1 0

14 1 to 0 to 1 1 0

15 1 to 0 to 1 1 0

16 1 to 0 to 1 1 0

17 1 to 0 to 1 1 0

18 1 to 0 to 1 1 0

 4

The waveform for the clock, reset and enable signals should similar to the following one:

Your timing diagram should contain the following signals:

a) Clock, reset, and enable.

b) PC (The output of the program counter).

c) Instruction (The output of the instruction memory).

d) The writedata, readreg1, readreg2, and writereg for the register file.

e) The output for the registers R5, R6, R7, R8, R9, R10, R11.

f) The input and the output of the ALU (a, b, m, result).

g) The output of the data memory.

 5

m
em

w
rite

m
em

read

P
C

26

01

210

In
str [31:26]

In
str [5:0]

012

4

b
ran

ch

m
em

toreg

In
str[25:0]

28
32

p
csrc

4

In
str [25:21]

2

2

31

In
stru

ction

M
em

ory

In
str

[31:0]

D
ata

M
em

ory

A
d

d
ress

R
ead

D
ata

W
riteD

ata

+

+
S

h
ift

L
eft 2

=
A

L
U

S
h

ift

L
eft 2

eq
u

al

16
32

32

IF/ID

C
on

trol

U
n

it

W
riteR

eg

W
riteD

ata

R
ead

R
eg1

R
ead

R
eg2

R
ead

D
ata1

R
ead

D
ata2

S
ign

E
xten

d

01 01

ID/

E
X

EX
/

MEM

MEM/WB

5
5

5

32

32

32 32

In
str [20:16]

P
C

+
4

5 32

5

32

32

32
32

3232

32

ju
m

p

regd
st

regw
rite

alu
op

3

P
C

+
4 [31:28]

3
2

alu
src

2
2

2

10

In
str [15:11]

In
str [15:0]

 Figure 1. The Datapath for Piplined Processor.

University of Jordan

Computer Engineering Department

CPE439: Computer Design Lab

Experiment 8: Resolving Data Hazards

Description

In this experiment, students have to add a forwarding unit that is capable of resolving register-

use data hazards for the pipelined processor that they implemented in experiment 7.

Register-use data hazards occur when there is dependence between consecutive instructions that

are being executed in the pipeline. Specifically, when the registers read by a later instruction are

effectively the destination for an earlier instruction, data hazards occur. Consider for example

add $1, $2, $3

sub $4, $1, $5

or $6, $1, $7

The last two instructions need to use the new value of $1. However, the new value is written by

the first instruction in the fifth cycle while it is needed in the second and third cycles for the second

and third instructions, respectively, as show in Figure 1 below.

Figure 1. Illustration of data hazards.

In order to obtain correct operation, one solution would be to stall the pipeline for two cycles to

wait until the value is written to the register file, as shown in Figure 2.

Figure 2. Solving data hazard by stalling the pipeline.

However, this solution affects the performance of the pipeline. Alternatively, we know that the

new value for $1 is computed and stored in the EX/MEM register by the end of the third cycle. So,

we can use this value before it is written to the register file by forwarding to the ALU input and use

it instead of the old value(s). Note how the value should be forwarded from the EX/MEM for the

second instruction and from the MEM/WB register for the third instruction to the ALU inputs as

shown in Figure 3. In other words, the inputs to the ALU are no longer the values read from the

register file when the data hazard exists.

Figure 3. Solving data hazard by forwarding.

The forwarding hardware is essentially a logic circuit that consists of a set of comparators that

compare the destination and source registers for consecutive instructions in addition to a set of

multiplexors connected to the ALU inputs as shown in Figure 4.

If the source register(s) (rs and/or rt) for some instruction that has been decoded (stored in the

ID/EX register) matches the destination register for the instruction that has passed the execute stage

(stored in the EX/MEM register), then the input to the ALU should be the ALU result found in the

EX/MEM register instead of the values read for the conflicting instruction in the decode stage. The

same argument holds for the case when the source register(s) for an instruction matches the

destination register for an earlier instruction that has finished the memory stage (stored in the

MEM/WB register).

Basically, the forwarding unit hardware should implement the following conditions

1) Forwarding the memory stage

a. if (EX/MEM.RegWrite && (EX/MEM.RegRd == ID/EX.RegRs) &&

 (EX/MEM.RegRd != 0))

 ForwardA[0] = 1;

b. if (EX/MEM.RegWrite && (EX/MEM.RegRd == ID/EX.RegRt) &&

 (EX/MEM.RegRd != 0))

 ForwardB[0] = 1;

2) Forwarding the write-back stage

a. if (MEM/WB.RegWrite && (MEM/WB.RegRd == ID/EX.RegRs) &&

 ((EX/MEM.RegRd != ID/EX.RegRs) || (EX/MEM.RegWrite==0)) &&

 (MEM/WB.RegRd != 0))

 ForwardA[1] = 1;

b. if (MEM/WB.RegWrite and (MEM/WB.RegRd == ID/EX.RegRt) and

 ((EX/MEM.RegRd != ID/EX.RegRt) || (EX/MEM.RegWrite==0)) &&

 (MEM/WB.RegRd != 0))

 ForwardB[1] = 1;

The ForwardA and ForwardB signals are outputs from the forwarding unit and are used to select the

proper input to the ALU.

0

1

0

1

231

ALU
ID

/

E

X

5

32
alusrc

0

1

2

0

1

2

Forwarding Unit

2

1

0

Data

Memory

Address

Read

Data

WriteData

E

X/

M

E

M

M

E

M

/

W

B

5

32

32

32

WriteReg

WriteData

ReadReg1

ReadReg2

Read

Data1

Read

Data2

Instr [25:21]

Instr [20:16]

Instr [15:11]

2
2 ForwardAForwardBIDEX_Rs

IDEX_Rt

EXMEM_Rd

EXMEM_RegWrite
MEMWB_RegWrite

MEMWB_Rd

regwrite

From Sign Extend Unit

Figure 4. Incorporating forwarding within the pipeline.

Procedure

In order to incorporate forwarding in your design you need to implement the forwarding unit and

use 32-bit 3-to-1 multiplexors at the ALU inputs. Then, you should wire these new modules with the

pipelined implementation as shown in Figure 4.

1) (Prelab.) 5-Bit Comparator

You need to write a structural Verilog module for 5-bit comparator. Your module should use

the following template:
module Comparator5bit (equal, a, b);

 input [4:0]a, b;

 output equal;

 // implementation details are left to the student

 endmodule

2) The Forwarding Unit

You need to build the forwarding unit structurally using 5-bit comparator and any necessary

gates. Your module should use the following template:
 module ForwardingUnit(ForwardA, ForwardB, EXMEM_Rd,

 MEMWB_Rd, IDEX_Rs, IDEX_Rt,

 EXMEM_RegWrite, MEMWB_RegWrite);

 input [4:0] EXMEM_Rd, MEMWB_Rd, IDEX_Rs, IDEX_Rt;

 input EXMEM_RegWrite, MEMWB_RegWrite;

 output [1:0]ForwardA, ForwardB;

 // implementation details are left to the student

 endmodule

3) The processor module

You need to modify the pipelined processor module by adding the forwarding unit and ALU

multiplexors and any needed modifications.

Testing

 (Prelab.) Write the Verilog module to test your forwarding unit. The test module for this unit

should use the data given in Table 1 as a benchmark,

Table 1. Test data for Forwarding Unit

EXMEM_Rd MEMWB_Rd IDEX_Rs IDEX_Rt EXMEM_RegWrite MEMWB_RegWrite

5'b00001 5'b00001 5'b00001 5'b00001 0 0

5'b00001 5'b00011 5'b00001 5'b00000 1 0

5'b00001 5'b00001 5'b00001 5'b00001 0 1

5'b00011 5'b00010 5'b00101 5'b00010 1 1

5'b00101 5'b00101 5'b00101 5'b00110 1 1

 (Prelab.) Next, it is required to test your design for the pipelined processor by filling the

instruction memory module by the instruction sequence shown in Table 2.

Table 2. The Content of the Instruction Memory

Address Instruction Machine Code

00 LW R1, 4 (R0) 8C010004h

01 LW R2, 12(R0)

02 LW R3, 20(R0)

03 LW R4, 28(R0)

04 ADD R5, R2, R1

05 AND R6, R5, R5

06 SLTI R6, R5, 8

07 OR R7, R2, R4

08 NAND R7, R2, R4

09 NOR R8, R7, R7

 (Prelab.) Next, write a Verilog test module to test your processor module

 Your Timing diagram should contain the following signals:

a) PC (The output of the program counter).

b) Instruction (The output of the instruction memory).

c) The writedata, readreg1, readreg2, and writereg for the register file.

d) The output for the registers R5, R7, R8.

e) The input and the output of the ALU (a, b, m, result).

f) The output of forwarding unit (ForwardA, ForwardB).

 Calculate number of cycles needed to execute the above code.

 1

 University of Jordan

Computer Engineering Department

CPE439: Computer Design Lab

Experiment 9: Resolving Control Hazards

Description

In the previous experiment, student worked on resolving one out of several cases where

data dependencies between instructions may cause data hazards in pipelining. In this

experiment, students have to modify their pipelining implementation to accommodate for a

new type of pipelining hazards; namely, control hazards.

Control hazards arise when executing program flow control instructions such as beq, j, jr,

and jal. When these instructions are being executed (stored in the IF/ID register), the

processor is fetching the following instruction (at PC+4). However, when execution is over

(the decoding of the flow instruction is over and it is stored in the ID/EX register), the fetched

instruction (stored in IF/ID register) might not be correct for conditional flow instructions

(beq) if the condition evaluates to true. In this case, the processor should have fetched the

instruction pointed-to by the branch address. Similarly, for unconditional flow instructions (j,

jr, and jal), the fetched instruction is always wrong since it has to be fetched from the jump

address for j and jal instructions, and from the address contained in one of the registers for the

jr instruction.

In order to resolve this hazard, the fetched instruction in both cases has to be removed

(flushed) from the pipeline. This can be implemented by clearing or flushing the IF/ID

register asynchronously after the instruction is stored and the hazard is detected. Note how

this affects the performance of the pipeline since it wastes one cycle.

In this experiment, students have to resolve control hazard by designing a hazard

detection hardware that is capable of determining the need for flushing the fetched instruction

or not based on the type of the instruction in the decode stage, and then incorporate it within

the pipelined implementation done in experiment 8, as shown in Figure 1.

Procedure

1) (Prelab.) Hazard Detection Unit

You need to build the hazard detection unit structurally. Your module should use the

following template:

 module HazardDetectionUnit(Flush, pcsrc, takenbranch);

 output Flush;

 input pcsrc, takenbranch;

 // implementation details are left to the student

 endmodule

2) The processor module

You need to modify the pipelined processor module by adding the hazard detection

unit and make the needed modifications.

 2

Figure 1

 3

Testing

 (Prelab.) Test your design for the pipelined processor by filling the instruction memory

by the instruction sequence shown in Table 1.

Table 1. The Content of the Instruction Memory

Address Instruction Machine Code

00 LW R1, 4(R0) 8C010004h

01 LW R2, 12(R0)

02 LW R3, 20(R0)

03 LW R4, 28(R0)

04 NAND R5, R1, R3

05 NORI R6, R5, 1023

06 SUB R8, R4, R2

07 JAL 11

08 XOR R7, R5, R6

09 SW R7, 8(R0)

10 J 19

11 ADDI R8, R8, 2

12 SW R5, 4(R0)

13 SW R6, 24(R0)

14 BEQ R8, R3, -4

15 SUB R9, R8, R3

16 JR R31

17 OR R10, R7, R9

18 SLT R11, R9, R4

 (Prelab.) Next, write a Verilog test module to test your processor module

 Your timing diagram should contain the following signals:

a) PC (The output of the program counter).

b) The output of IFID register.

c) The output for the registers R5, R6, R7, R8, R9, R10, R11.

d) The output of forwarding unit (ForwardA, ForwardB).

e) The input and the output of hazard detection unit.

 Calculate number of cycles needed to execute the above code.

	Experiment 1 2016
	Experiment 2 2016
	Experiment 3 2016
	Experiment 4 2016
	Experiment 5 2016
	Experiment 6 2016
	Experiment 7 2016
	Experiment 8 2016
	Experiment 9 2016

